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Abstract: We set up precision holography for the non-conformal branes preserving 16

supersymmetries. The near-horizon limit of all such p-brane solutions with p ≤ 4, including

the case of fundamental string solutions, is conformal to AdSp+2 × S8−p with a linear

dilaton. We develop holographic renormalization for all these cases. In particular, we obtain

the most general asymptotic solutions with appropriate Dirichlet boundary conditions,

find the corresponding counterterms and compute the holographic 1-point functions, all

in complete generality and at the full non-linear level. The result for the stress energy

tensor properly defines the notion of mass for backgrounds with such asymptotics. The

analysis is done both in the original formulation of the method and also using a radial

Hamiltonian analysis. The latter formulation exhibits most clearly the existence of an

underlying generalized conformal structure. In the cases of Dp-branes, the corresponding

dual boundary theory, the maximally supersymmetric Yang-Mills theory SYMp+1, indeed

exhibits the generalized conformal structure found at strong coupling. We compute the

holographic 2-point functions of the stress energy tensor and gluon operator and show they

satisfy the expected Ward identities and the constraints of generalized conformal structure.

The holographic results are also manifestly compatible with the M-theory uplift, with the

asymptotic solutions, counterterms, one and two point functions etc. of the IIA F1 and D4

appropriately descending from those of M2 and M5 branes, respectively. We present a few

applications including the computation of condensates in Witten’s model of holographic

YM4 theory.
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1. Introduction

The AdS/CFT correspondence [1] is one of the most far reaching and important ideas to

emerge in recent years. On the one hand it opens a window into the strong coupling dy-

namics of gauge theories, whilst on the other hand it provides a qualitatively new paradigm

for gravitational physics: spacetime is emergent, reconstructed from gauge theory data. A

key ingredient in using gravity/gauge theory duality in such a way is the holographic dic-

tionary. One needs to know the precise relationship between bulk and boundary physics

before one can use the weakly coupled description on one side to compute quantities in

the other. In the case of asymptotically AdS ×X backgrounds (with X compact) the un-

derlying principles of the correspondence were laid out in the foundational papers on the

subject [2, 3]: for every bulk field Φ there is a corresponding gauge invariant operator OΦ

in the boundary theory, and the bulk partition function with given boundary conditions

for Φ acts as the generating functional for correlation functions of this operator.

To promote the bulk/boundary correspondence from a formal relation to a framework

in which one can calculate, one needs to specify how divergences on both sides are treated.

In the boundary theory, these are the UV divergences, which are dealt with by standard

techniques of renormalization. In the bulk, the divergences are due to the infinite volume,

and are thus IR divergences, which need to be dealt with by holographic renormalization,

the precise dual of standard QFT renormalization [4 – 9, 11, 12]; for a review see [10]. The

procedure of holographic renormalization in asymptotically AdS spacetimes allows one to

extract the renormalized one point functions for local gauge invariant operators from the

asymptotics of the spacetime; these can then be functionally differentiated in the standard

way to obtain higher correlation functions.

By now there are many other conjectured examples of gravity/gauge theory dualities

in string theory, which involve backgrounds with different asymptotics. The case of interest

for us is the dualities involving non-conformal branes [13, 14] which follow from decoupling

limits, and are thus believed to hold, although rather few quantitative checks of the dualities

have been carried out. It is important to develop our understanding of these dualities for

a number of reasons. First of all, a primary question in quantum gravity is whether the

theory is holographic. Examples such as AdS/CFT indicate that the theory is indeed

holographic for certain spacetime asymptotics, but one wants to know whether this holds

more generally. Exploring cases where the asymptotics are different but one has a proposal

for the dual field theory is a first step to addressing this question.
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Secondly, the cases mentioned are interesting in their own right and have many useful

applications. For example, one of the major aims of work in gravity/gauge dualities is to

find holographic models which capture features of QCD. A simple model which includes

confinement and chiral symmetry breaking can be obtained from the decoupling limit of a

D4-brane background, with D8-branes added to include flavor, the Witten-Sakai-Sugimoto

model [15 – 17]. This model has been used extensively to extract strong coupling behavior

as a model for that in QCD. More generally, non-conformal p-brane backgrounds with

p = 0, 1, 2 may have interesting unexploited applications to condensed matter physics;

the conformal backgrounds have proved useful in modeling strong coupling behavior of

transport properties and the non-conformal examples may be equally useful.

The non-conformal brane dualities have not been extensively tested, although some

checks of the duality can be found in [18 – 21] whilst the papers [22 – 24] discuss the under-

lying symmetry structure on both sides of the correspondence. Recently, there has been

progress in using lattice methods to extract field theory quantities, particularly for the

D0-branes [25]. Comparing these results to the holographic predictions serves both to test

the duality, and conversely to test lattice techniques (if one assumes the duality holds).

Given the increasing interest in these gravity/gauge theory dualities, one would like

to develop precision holography for the non-conformal branes, following the same steps

as in AdS: one wants to know exactly how quantum field theory data is encoded in the

asymptotics of the spacetime. Precision holography has not previously been extensively

developed for non-conformal branes (see however [26 – 30]), although as we will see the

analysis is very close to the analysis of the Asymptotically AdS case. The reason is that

the non-conformal branes admit a generalized conformal symmetry [22 – 24]: there is an

underlying conformal symmetry structure of the theory, provided that the string coupling

(or in the gauge theory, the Yang-Mills coupling) is transformed as a background field of

appropriate dimension under conformal transformations. Whilst this is not a symmetry in

the strict sense of the word, the underlying structure can be used to derive Ward identities

and perhaps even prove non-renormalization theorems.

In this paper we develop in detail how quantum field theory data can be extracted from

the asymptotics of non-conformal brane backgrounds. We begin in section 2 by recalling

the correspondence between non-conformal brane backgrounds and quantum field theories.

We also introduce the dual frame, in which the near horizon metric is AdSp+2 × S8−p. In

section 3 we give the field equations in the dual frame for both D-brane and fundamental

string solutions.

In the near horizon region of the supergravity solutions conformal symmetry is broken

only by the dilaton profile. This means that the background admits a generalized conformal

structure: it is invariant under generalized conformal transformations in which the string

coupling is also transformed. This generalized conformal structure and its implications are

discussed in section 4.

Next we proceed to set up precision holography. The basic idea is to obtain the most

general asymptotic solutions of the field equations with appropriate Dirichlet boundary

conditions. Given such solutions, one can identify the divergences of the onshell action,

find the corresponding counterterms and compute the holographic 1-point functions, in
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complete generality and at the non-linear level. This is carried out in section 5. In partic-

ular, we give renormalized one point functions for the stress energy tensor and the gluon

operator, in the presence of general sources, for all cases.

In section 6 we proceed to develop a radial Hamiltonian formulation for the holo-

graphic renormalization. As in the asymptotically AdS case, the Hamiltonian formulation

is more elegant and exhibits clearly the underlying generalized conformal structure. In the

following sections, 7 and 8, we give a number of applications of the holographic formulae.

In particular, in section 7 we compute two point functions and in section 8 we compute

condensates in Witten’s model of holographic QCD and the renormalized action, mass etc

in a non-extremal D1-brane background.

In section 9 we give conclusions and a summary of our results. The appendices A, B, C

and D contain a number of useful formulae and technical details. Appendix A summarizes

useful formulae for the expansion of the curvature whilst appendix B discusses the holo-

graphic computation of the stress energy tensor for asymptotically AdSD+1, with D = 4, 6;

in the latter the derivation is streamlined, relative to earlier discussions, and the previ-

ously unknown traceless, covariantly constant contributions to the stress energy tensor in

six dimensions are determined. Appendix C contains the detailed relationship between the

M5-brane and D4-brane holographic analysis whilst appendix D gives explicit expressions

for the asymptotic expansion of momenta.

The results of this work have been reported at a number of recent conferences [31]. As

this paper was finalized we received [32] which contains related results.

2. Non-conformal branes and the dual frame

Let us begin by recalling the brane solutions of supergravity, see for example [33] for a

review. The relevant part of the supergravity action in the string frame is

S =
1

(2π)7α′4

∫

d10x
√−g

[

e−2φ

(

R+ 4(∂φ)2 − 1

12
H2

3

)

− 1

2(p + 2)!
F 2

p+2

]

. (2.1)

The Dp-brane solutions can be written in the form:

ds2 = (H−1/2ds2(Ep,1) +H1/2ds2(E9−p)); (2.2)

eφ = gsH
(3−p)/4;

C0···p = g−1
s (H−1 − 1) or F8−p = g−1

s ∗9−p dH,

where the latter depends on whether the brane couples electrically or magnetically to the

field strength. Here gs is the string coupling constant. We are interested in the simplest

supersymmetric solutions, for which the defining function H is harmonic on the flat space

E9−p transverse to the brane. Choosing a single-centered harmonic function

H = 1 +
Qp

r7−p
, (2.3)

then the parameter Qp for the brane solutions of interest is given by Qp = dpNgsl
7−p
s with

the constant dp equal to dp = (2
√
π)5−pΓ(7−p

2 ), whilst l2s = α′ and N denotes the integral

quantized charge.
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Soon after the AdS/CFT duality was proposed [1], it was suggested that an analogous

correspondence exists between the near-horizon limits of non-conformal D-brane back-

grounds and (non-conformal) quantum field theories [13]. More precisely, one considers

the field theory (or decoupling) limit to be:

gs → 0, α′ → 0, U ≡ r

α′
= fixed, g2

dN = fixed, (2.4)

where g2
d is the Yang-Mills coupling, related to the string coupling by

g2
d = gs(2π)p−2(α′)(p−3)/2. (2.5)

Note that N can be arbitrary for p < 3 but (2.4) requires that N → ∞ when p > 3. The

decoupling limit implies that the constant part in the harmonic function is negligible:

H = 1 +
Dpg

2
dN

α′2U7−p
⇒ 1

α′2

Dpg
2
dN

U7−p
, (2.6)

where Dp ≡ dp(2π)2−p.

The corresponding dual (p+1)-dimensional quantum field theory is obtained by taking

the low energy limit of the (p + 1)-dimensional worldvolume theory on N branes. In the

case of the Dp-branes this theory is the dimensional reduction of N = 1 SYM in ten

dimensions. Recall that the action of ten-dimensional SYM is given by

S10 =

∫

d10x
√−gTr

(

− 1

4g2
10

FmnF
mn +

i

2
ψ̄Γm[Dm, ψ]

)

, (2.7)

with Dm = ∂m − iAm. The dimensional reduction to d dimensions gives the bosonic terms

Sd =

∫

ddx
√−gTr

(

− 1

4g2
d

FijF
ij − 1

2
DiXD

iX +
g2
d

4
[X,X]2

)

(2.8)

where i = 0, · · · (d − 1) and there are (9 − p) scalars X. The fermionic part of the action

will not play a role here. Note that the Yang-Mills coupling in d = (p+ 1) dimensions, g2
d,

has (length) dimension (p− 3), and thus the theory is not renormalizable for p > 3. Since

the coupling constant is dimensionful, the effective dimensionless coupling constant g2
eff(E)

is

g2
eff (E) = g2

dNE
p−3. (2.9)

at a given energy scale E.

This discussion of the decoupling limit applies to D-branes, but we will also be in-

terested in fundamental strings. The fundamental string solutions can be written in the

form:

ds2 = (H−1ds2(E1,1) + ds2(E8)); (2.10)

eφ = gsH
−1/2;

B01 = (H−1 − 1),

– 5 –
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where the harmonic function H = 1 +QF1/r
6 with QF1 = d1Ng

2
s l

6
s . For completeness, let

us also mention that the NS5-brane solutions can be written in the form:

ds2 = (ds2(E1,5) +Hds2(E4)); (2.11)

eφ = gsH
1/2;

H3 = ∗4dH,

where the harmonic function H = 1 +QNS5/r
2 with QNS5 = Nl2s .

Whilst the fundamental string solutions have a near string region which is conformal

to AdS3 ×S7 with a linear dilaton, they do not appear to admit a decoupling limit like the

one in (2.4) which decouples the asymptotically flat region of the geometry and has a clear

meaning from the worldsheet point of view. Nonetheless one can discuss holography for

such conformally AdS3 × S7 linear dilaton backgrounds, using S duality and the relation

to M2-branes: IIB fundamental strings can be included in the discussion by applying S

duality to the D1 brane case, and IIA fundamental strings by using the fact they are related

to M2 branes wrapped on the M-theory circle.

In the cases of Dp-branes the decoupled region is conformal to AdSp+2×S8−p and there

is a non-vanishing dilaton. The same holds for the near string region of the fundamental

string solutions. This implies that there is a Weyl transformation such that the metric is

exactly AdSp+2×S8−p. This Weyl transformation brings the string frame metric gst to the

so-called dual frame metric gdual [14] and is given by

ds2dual = (Neφ)cds2st, (2.12)

with

c = − 2

(7 − p)
Dp. (2.13)

In this frame the action is

S =
N2

(2π)7α′4

∫

d10x
√−g(Neφ)γ

(

R+ 4
(p − 1)(p − 4)

(7 − p)2
(∂φ)2 − 1

2(p + 2)!N2
F 2

p+2

)

. (2.14)

with γ = 2(p − 3)/(7 − p). The terminology dual frame has the following origin. Each

p-brane couples naturally to a (p + 1) potential. The corresponding (Hodge) dual field

strength is an (8 − p) form. In the dual frame this field strength and the graviton couple

to the dilaton in the same way. For example the dual frame of the NS5 branes is the string

frame: the dual (8 − p) form is H3 and the metric and H3 couple the same way to the

dilaton in the string frame, as can be seen from (2.1).1

1The dual frame was originally introduced in [34] and the rational behind its introduction was the

following. If one has a formulation where the fundamental degrees of freedom are p-branes that couple

electrically to a p form, then one expects there to exist non-singular magnetic solitonic solutions. Let

us exemplify this for the case of perturbative strings, where the elementary objects are strings. The

corresponding magnetic objects, the NS5 branes, indeed appear as solitonic objects. Moreover, the target

space metric and the B field couple to the coupling constant of the theory, the dilaton, in the same way, so

the low energy effective action is in the string frame. Suppose now that there is a formulation where the

– 6 –
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The D5-brane behaves qualitatively differently, as the solution in the dual frame is a

linear dilaton background with metric E5,1 ×R× S3:

ds2dual = ds2(E5,1) +Q

(

dr2

r2
+ dΩ2

3

)

; (2.15)

eφ =
r√
Q

; F3 = QdΩ3.

Holography for both D5 and NS5 branes involves such linear dilaton background geometries,

and will not be discussed further in this paper.

Here we will interested in precision holography for the cases where the geometry is

conformal to AdSp+2 × S8−p; this encompasses Dp-branes with p = 0, 1, 2, 3, 4, 6. In all

such cases the dual frame solution takes the form

ds2dual = α′d
2

(7−p)
p

(

D−1
p (g2

dN)−1U5−pds2(Ep,1) +
dU2

U2
+ dΩ2

8−p

)

; (2.16)

eφ =
1

N
(2π)2−pD(3−p)/4

p

(

(g2
dN)Up−3

)(7−p)/4
,

with the field strength being

F8−p = (7 − p)dpN(α′)(7−p)/2dΩ8−p. (2.17)

Note that the factors of α′ cancel in the effective supergravity action, with only dependence

on the dimensionful ’t Hooft coupling and N remaining. It is convenient to express the

field strength magnetically; for p < 3 this should be interpreted as Fp+2 = ∗F8−p, with the

Hodge dual being taken in the dual frame metric.

Changing the variable,

u2 = R−2(Dpg
2
dN)−1U5−p, R =

2

5 − p
, (2.18)

brings the AdS metric into the standard form

ds2dual = α′d
2

7−p
p

[

R2

(

du2

u2
+ u2ds2(Ep,1)

)

+ dΩ2
8−p

]

, (2.19)

eφ =
1

N
(2π)2−p(g2

dN)
(7−p)
2(5−p)D

(3−p)
2(p−5)
p

(

R2u2
)

(p−3)(p−7)
4(p−5) .

with the field strength being (2.17). Note that by rescaling the metric, dilaton and field

strength as

ds2dual = α′d
2

7−p
p d̃s

2
; Neφ = (2π)2−p(g2

dN)
(7−p)
2(5−p)D

(3−p)
2(p−5)
p eφ̃; F8−p = dpN(α′)(7−p)/2F̃8−p.

elementary degrees of freedom are p-branes. Then one would anticipate that there exist smooth solitonic

(6 − p)-brane solutions of the theory of the effective action in the p-frame, which is precisely the dual

frame. Indeed, the spacetime metric of Dp branes when expressed in the dual frame is non-singular. We

should note though that there is currently no formulation of string theory where p branes appear to be the

elementary degrees of freedom. Other special properties of the dual frame solutions are discussed in [35, 36].

– 7 –
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the factors of Dp, N and the ’t Hooft coupling can be absorbed into the overall normaliza-

tion of the action.

It has been argued in [14] that the dual frame is the holographic frame in the sense

that the radial direction u in this frame is identified with the energy scale of the boundary

theory,

u ∼ E . (2.20)

More properly, as we will discuss later, the dilatations of the boundary theory are identified

with rescaling of the u coordinate. Using (2.20) and (2.9) the dilaton in (2.19) and for the

case of D-branes becomes

eφ =
1

N
cd
(

g2
eff(u)

)

7−p
2(5−p) , cd = (2π)2−pD

(p−3)
2(5−p)
p R

(p−3)(7−p)
2(5−p) . (2.21)

The validity of the various approximations was discussed in [13, 37, 14]. In particular, we

consider the large N limit, keeping fixed the effective coupling constant g2
eff , so the dilaton

is small in all cases (recall that the decoupling limit when p > 3 requires N → ∞). If

g2
eff ≪ 1 then the perturbative SYM description is valid, whereas in the opposite limit

g2
eff ≫ 1 the supergravity approximation is valid.

As a consistency check, one can also derive (2.21) using the open string description.

The low energy description in the string frame is given by

Sst = − 1

(2π)p−2(α′)(p−3)/2

∫

dp+1x
√−gste−φ 1

4
Tr(FijFkl)g

ik
st g

jl
st + · · · , (2.22)

where we indicate explicitly that the metric involved is the string frame metric. In the

case of flat target spacetime, gst is the Minkowski metric and eφ = gs and we recover (2.5)

by identifying the overall prefactor of TrF 2 with 1/(4g2
d). In our case, transforming to the

dual frame and using the form of the metric in (2.19) we get

Sdual = −Rp−3d
(p−3)
(7−p)
p

(2π)p−2

∫

dp+1x(Neφ)
2(p−5)
(7−p) (Nup−3)

1

4
(TrF 2) + · · · (2.23)

where now the Lorentz index contractions in TrF 2 are with the Minkowski metric. Identi-

fying now the overall prefactor of TrF 2 with 1/(4g2
d) is indeed equivalent to (2.21).

As mentioned above, we will also include fundamental strings in our analysis, exploiting

the relation to D1-branes and M2-branes. In this case we focus on the near string geometry,

dropping the constant term in the harmonic function, and introduce a dual frame metric

ds2dual = (Neφ)cds2st with

c = −2

3
F1, (2.24)

with the dual frame metric being AdS3 × S7. The detailed form of the effective action in

the dual frame will be given in the next section.

The aim of this paper will be to consider solutions which asymptote to the decou-

pled non-conformal brane backgrounds and show how renormalized quantum field theory

information can be extracted from the geometry. It may be useful to recall first how the

– 8 –
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conformal case of p = 3 works. Given the AdS5 × S5 background, the spectrum of su-

pergravity fluctuations about this background corresponds to the spectrum of single trace

gauge invariant chiral primary operators in the dual N = 4 SYM theory. The spectrum

includes stringy modes and D-branes, which correspond to other non primary, high dimen-

sion and non-local operators in the dual N = 4 SYM theory. Encoded in the asymptotics

of any asymptotically AdS5 × S5 supergravity background are one point functions of the

chiral primary operators. These allow one to extract the vacuum structure of the dual

theory (its vevs and deformation parameters), and if one switches on sources one can also

extract higher correlation functions.

The sphere in this background has a radius which is of the same order as the AdS radius,

so the higher KK modes are not suppressed relative to the zero modes and one cannot

ignore them. It is nevertheless possible to only keep a subset of modes when the equations

of motion admit solutions with all modes except the ones kept set equal to zero, i.e. there

exist consistent truncations. The existence of such truncations signify the existence of a

subset of operators of the dual theory that are closed under OPEs. The resulting theory

is a (d + 1)-dimensional gauged supergravity and such gauged supergravity theories have

been the starting point for many investigations in AdS/CFT. Gauged supergravity retains

only the duals to low dimension chiral primaries in SYM, those in the same multiplet as

the stress energy tensor. More recently, the method of Kaluza-Klein holography [46] has

been developed to extract systematically one point functions of all other single trace chiral

operators.

The goal here is to take the first step in holographic renormalization for non-conformal

branes. We will consistently truncate the bulk theory to just the (p + 2)-dimensional

graviton and the dilaton, and compute renormalized correlation functions in this sector.

Unlike the p = 3 case one must retain the dilaton as it is running: the gauge coupling of

the dual theory is dimensionful and runs. Such a truncation was considered already in [14]

and we will recall the resulting (p + 2)-dimensional action in the next section. Given an

understanding of holographic renormalization in this truncated sector, it is straightforward

to generalize this setup to include fields dual to other gauge theory operators.

3. Lower dimensional field equations

The supergravity solutions for Dp-branes and fundamental strings in the decoupling limit

can be best analyzed by going to the dual frame reviewed in the previous section, (2.12)

and (2.24). The dual frame is defined as ds2dual = (Neφ)cds2, with c = −2/(7 − p) for

Dp-branes and c = −2/3 for fundamental strings. The Weyl transformation to the dual

frame in ten dimensions results in the following action:

S = − N2

(2π)7α′4

∫

d10x
√
gNγeγφ

[

R+ β(∂φ)2 − 1

2(8 − p)!N2
|F8−p|2

]

(3.1)

where the constants (β, γ) are given below in (3.5) for Dp-branes and (3.6) for fundamental

strings respectively. Note that it is convenient to express the field strength magnetically;

for p < 3 this should be interpreted as Fp+2 = ∗F8−p. From here onwards we will also work

in Euclidean signature.

– 9 –
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For p 6= 5, the field equations in this frame admit AdSp+2 ×S8−p solutions with linear

dilaton. One can reduce the field equations over the sphere, truncating to the (p + 2)-

dimensional graviton g̃µν and scalar φ̃. For the Dp-branes the reduction ansatz is

ds2dual = α′d−c
p (R2g̃µν(xρ)dxµdxν + dΩ2

8−p); (3.2)

F8−p = (7 − p)g−1
s QpdΩ8−p;

eφ = gs(r
2
oR2)(p−3)(7−p)/4(5−p)eφ̃,

with r7−p
o ≡ Qp and R = 2/(5 − p). The ten-dimensional metric is in the dual frame and

prefactors are chosen to absorb the radius and overall metric and dilaton prefactors of the

AdSp+2 solution. For the fundamental string one reduces the near horizon geometry as:

ds2dual = α′(d1N
−1)1/3(R2g̃µν(xρ)dxµdxν + dΩ2

7); (3.3)

H7 = 6QF1dΩ7;

eφ = gs(roR)3/2eφ̃,

where H7 = ∗H3, r
6
o ≡ QF1 and R = 2/(5− p). It is then straightforward to show that the

equations of motion for the lower-dimensional fields for both Dp-branes and fundamental

strings follow from an action of the form:

S = −L
∫

dd+1x
√

g̃eγφ̃[R̃+ β(∂φ̃)2 + C]. (3.4)

Here d = p + 1 and the constants (L, β, γ,C) depend on the case of interest; since from

here onwards we are interested only in (d + 1)-dimensional fields we suppress their tilde

labeling. For Dp-branes the constants are given by

γ =
2(p− 3)

7 − p
, β =

4(p− 1)(p − 4)

(7 − p)2
,

R =
2

5 − p
, C =

1

2
(9 − p)(7 − p)R2, (3.5)

L =
Ω8−pr

(7−p)2/(5−p)
o R(9−p)/(5−p)

(2π)7α′4
=

(dpN)(7−p)/(5−p)g
2(p−3)/(5−p)
d R(9−p)/(5−p)

64π(5+p)/2(2π)(p−3)(p−2)/(5−p)Γ(9−p
2 )

.

For the fundamental string one gets instead:

γ =
2

3
, β = 0, C = 6, (3.6)

L =
Ω7r

9
o

4(2π)7g2
s(α

′)4
=
gsN

3/2(α′)1/2

6
√

2
,

This expression is related to that for the D1-brane background by gs → 1/gs with α′ → α′gs,

as one would expect from S duality. The truncation is consistent, as one can show that

any solution of the lower-dimensional equations of motion also solves the ten-dimensional

equations of motion, using the reduction given in (3.2). Note that more general reductions

of type II theories on spheres to give gauged supergravity theories were discussed in [39].
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These reductions would be relevant if one wants to include additional operators in the

boundary theory, beyond the stress energy tensor and scalar operator.

In both cases the equations of motion admit an AdSd+1 solution

ds2 =
dρ2

4ρ2
+
dxidx

i

ρ
; (3.7)

eφ = ρα,

where i = 1 · · · d. Note that ρ is related to the radial coordinate u used earlier by ρ = 1/u2.

The constant α again depends on the case of interest:

α = −(p− 7)(p − 3)

4(p − 5)
; Dp (3.8)

α = −3

4
; F1.

Note that for computational convenience the metric and dilaton have been rescaled relative

to [14] to set the AdS radius to one and to pull all factors of N and gs into an overall

normalization factor. The radial variable ρ then has length dimension 2 and eφ has length

dimension 2α.

For arbitrary d, β and γ, the field equations for the metric and scalar field following

from (3.4) are2

−Rµν + (γ2 − β)∂µφ∂νφ+ γ∇µ∂νφ+
1

2
gµν [R+ (β − 2γ2)(∂φ)2 − 2γ∇2φ+ C] = 0,

γR− βγ(∂φ)2 + Cγ − 2β∇2φ = 0. (3.9)

These equations admit an AdS solution with linear dilaton provided that α and C satisfy

α = − γ

2(γ2 − β)
, C =

(d(γ2 − β) + γ2)(d(γ2 − β) + β)

(γ2 − β)2
. (3.10)

We can thus treat both Dp-brane and fundamental string cases simultaneously, by process-

ing the field equations for arbitrary (d, β, γ) and writing (α,C) in terms of these parame-

ters. It might be interesting to consider whether other choices of (d, β, γ) admit interesting

physical interpretations.

By taking the trace of the first equation in (3.9) and combining it with the second one

can obtain the more convenient three equations

−Rµν + (γ2 − β)∂µφ∂νφ+ γ∇µ∂νφ− γ2 + d(γ2 − β)

γ2 − β
gµν = 0, (3.11)

∇2φ+ γ(∂φ)2 − γ(d(γ2 − β) + γ2)

(γ2 − β)2
= 0,

R+ β(∂φ)2 +
(d(γ2 − β) + γ2)(d(γ2 − β) − β)

(γ2 − β)2
= 0,

where the last line follows from the first two.

2Our conventions for the Riemann and Ricci tensor are Rσ
µνρ = −2Γσ

µ[ν,ρ] − 2Γτ
µ[νΓσ

ρ]τ , Rµν = Rσ
µσν .

– 11 –



J
H
E
P
0
9
(
2
0
0
8
)
0
9
4

The type IIA fundamental strings and D4-branes are related to the M theory M2-branes

and M5-branes respectively under dimensional reduction along a worldvolume direction.

The M brane theories fall within the framework of AdS/CFT, with the correspondence

being between AdS4 × S7 and AdS7 × S4 geometries, respectively, and the still poorly

understood conformal worldvolume theories. Reducing on the spheres gives four and seven

dimensional gauged supergravity, respectively, which can be truncated to Einstein gravity

with negative cosmological constant. That is, the effective actions are simply

SM = −LM

∫

dd+2x
√
G (R(G) + d(d+ 1)) , (3.12)

where d = 2 for the M2-brane and d = 5 for the M5-brane. The normalization constant is

LM2 =

√
2N3/2

24π
; LM5 =

N3

3π3
. (3.13)

and the action clearly admits an AdSd+2-dimensional space with unit radius as a solution:

ds2 =
dρ2

4ρ2
+

1

ρ
(dxidx

i + dy2), (3.14)

where i = 1, · · · , d.
Now consider a diagonal dimensional reduction of the (d+2)-dimensional solution over

y, i.e. let the metric be

ds2 = gµν(x)dxµdxν + e4φ(x)/3dy2. (3.15)

Substituting into the (d+ 2)-dimensional field equations gives precisely the field equations

following from the action (3.4); note that γ = 2/3, β = 0 for both the fundamental string

and D4-branes. It may be useful to recall here that the standard dimensional reduction of

an M theory metric to a (string frame) type IIA metric gMN is

ds211 = e−2φ/3gMNdx
MdxN + e4φ/3dy2

11. (3.16)

The relation between dual frame and string frame metrics given in (2.12) leads to (3.15).

Note that

L = LM(2πRy) = 2πgslsLM , (3.17)

where we use the standard relation for the radius of the M theory circle.

The other Dp-branes of type IIA are of course also related to M theory objects: the D0-

brane background uplifts to a gravitational wave background, the D6-brane background

uplifts to a Kaluza-Klein monopole background whilst the D2-branes are related to the

reduction of M2-branes transverse to the worldvolume. These connections will not play

a role in this paper. The uplifts reviewed above are useful here as holographic renor-

malization for the conformal branes is well understood, but holography for gravitational

wave backgrounds and Kaluza-Klein monopoles is less well understood than that for the

non-conformal branes.

One could use a different reduction and truncation of the theory in the AdS4 × S7

background to obtain the action (3.4) for D2-branes. In this case one would embed the M

theory circle into the S7, and then truncate to only the four-dimensional graviton, along

with the scalar field associated with this M theory circle. This reduction will not however

be used here.
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4. Generalized conformal structure

In this section we will discuss the underlying generalized conformal structure of the non-

conformal brane dualities. Recall that the corresponding worldvolume theory is SYMp+1.

We will be interesting in computing correlation functions of gauge invariant operators in

this theory. Recall that gauge/gravity duality maps bulk fields to boundary operators. In

our discussion in the previous section we truncated the bulk theory to gravity coupled to a

scalar field in (d+ 1) dimensions. The bulk metric corresponds to the stress energy tensor

as usual, while as we will see the scalar field corresponds to a scalar operator of dimension

four. As usual the fields that parametrize their boundary conditions are identified with

sources that couple to gauge invariant operators.

Consider the following (p+ 1)-dimensional (Euclidean) action,

Sd[g(0)ij(x),Φ(0)(x)] = −
∫

ddx
√

g(0)

(

−Φ(0)
1

4
TrFijF

ij +
1

2
Tr

(

X

(

D2 − (d− 2)

4(d− 1)
R

)

X

)

+
1

4Φ(0)
Tr[X,X]2

)

. (4.1)

where g(0)ij is a background metric Φ(0)(x) is a scalar background field. Setting

g(0)ij = δij , Φ(0) =
1

g2
d

, (4.2)

the action (4.1) becomes equal to the action of the SYMp+1 given in (2.8) (here and it what

follows we suppress the fermionic terms). The action (4.1) is invariant under the following

Weyl transformations

g(0) → e2σg(0), X → e(1−
d
2
)σX, Ai → Ai, Φ(0) → e−(d−4)σΦ(0) (4.3)

Note that the combination P1 = D2− d−2
4(d−1)R, is the conformal Laplacian in d dimensions,

which transforms under Weyl transformations as P1 → e−(d/2+1)σP1e
(d/2−1)σ .

Let us now define,

Tij =
2

√
g(0)

δSd

δgij
(0)

, O =
1

√
g(0)

δSd

δΦ(0)
(4.4)

They are given by

Tij = Tr

(

Φ(0)FikFj
k +DiXDjX +

d− 2

4(d − 1)
(X2Rij −DiDjX

2 + g(0)ijD
2X2)

−g(0)ij
(

1

4
Φ(0)F

2 +
1

2
(DX)2 +

(d− 2)

8(d− 1)
RX2 − 1

4Φ(0)
[X,X]2

))

(4.5)

O = Tr

(

1

4
F 2 +

1

4Φ2
(0)

[X,X]2

)

. (4.6)

Using standard manipulations, see for example [8, 9], we obtain the standard diffeo-

morphism and trace Ward identities,

∇j〈Tij〉J + 〈O〉J∂iΦ(0) = 0, (4.7)

〈T i
i 〉J + (d− 4)Φ(0)〈O〉J = 0, (4.8)
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where 〈B〉J denotes an expectation value of B in the presence of sources J . One can verify

that these relations are satisfied at the classical level, i.e. by using (4.5) and the equations of

motion that follow from (4.1). Setting g(0)ij = δij ,Φ(0) = g−2
d one recovers the conservation

of the energy momentum tensor of the SYMd theory and the fact that conformal invariance

is broken by the dimensionful coupling constant. Note that the kinetic part of the scalar

field does not contribute to the breaking of conformal invariance because this part of the

action is conformally invariant in any dimension (using the conformal Laplacian). This also

dictates the position of the coupling constant in (2.8). In a flat background one can change

the position of the coupling constant by rescaling the fields. For example, by rescaling

X → X/gd the coupling constant becomes an overall constant. This is the normalization

one gets from worldvolume D-brane theory in the string frame. This action however does

not generalize naturally to a Weyl invariant action. Instead it is (2.8) (with the coupling

constant promoted to a background field) that naturally couples to a metric in a Weyl

invariant way.

The Ward identities (4.7) lead to an infinite number of relations for correlation func-

tions obtained by differentiating with respect to the sources and setting the sources to

g(0)ij = ηij, where ηij is the Minkowski metric and Φ(0) = 1/g2
d . The first non-trivial

relations are at the level of 2-point functions (x 6= 0).

∂j
x〈Tij(x)Tkl(0)〉 = 0,

∂j
x〈Tij(x)O(0)〉 = 0 (4.9)

〈T i
i (x)Tkl(0)〉 + (p − 3)

1

g2
d

〈O(x)Tkl(0)〉 = 0

〈T i
i (x)O(0)〉 + (p− 3)

1

g2
d

〈O(x)O(0)〉 = 0.

The Ward identities (4.7) were derived by formal path integral manipulations and

one should examine whether they really hold at the quantum level. Firstly, for the case

of the D4 brane the worldvolume theory is non-renormalizable, so one might question

whether the correlators themselves are meaningful. At weak coupling, renormalizing the

correlators would require introducing new higher dimension operators in the action, as

well as counterterms that depend on the background fields. This process should preserve

diffeomorphism and supersymmetry, but it may break the Weyl invariance. Introducing

a new source Φj
(0) for every new higher dimension operator Oj added in the process of

renormalization would then modify the trace Ward identity as

〈T i
i 〉 −

∑

j≥0

(d− ∆j)Φ
j
(0)〈Oj〉 = A, (4.10)

where ∆j is the dimension of the operator Oi (with Φ0
(0) = Φ(0),O0 = O,∆0 = 4). Due

to supersymmetry one would anticipate that ∆i are protected. One would also anticipate

that these operators are dual to the KK modes of the reduction over the sphere S8−p.

As discussed in the previous section, one can consistently truncate these modes at strong

coupling, so the gravitational computation should lead to Ward identities of the form (4.8),
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up to a possible quantum anomaly A. A originates from the counterterms that depend on

the background fields only (g(0),Φ(0), . . .). In general, A would be restricted by the Wess-

Zumino consistency and therefore should be built from generalized conformal invariants.

We will show the extracted holographic Ward identities, (5.78), indeed agree with (4.7)–

(4.8)) with a quantum anomaly only for p = 4.

In a (p + 1)-dimensional conformal field theory, the entropy S at finite temperature

TH necessarily scales as

S = c(g2
YMN,N, · · · )VpT

p
H (4.11)

where Vp is the spatial volume, gYM is the coupling, N is the rank of the gauge group, g2
YMN

is the ’t Hooft coupling constant and the ellipses denote additional dimensionless parame-

ters. c(g2
YMN,N, · · · ) denotes an arbitrary function of these dimensionless parameters. In

the cases of interest here, scaling indicates that the entropy behaves as

S = c̃((g2
eff (TH), N, · · · )VpT

p
H , (4.12)

where g2
eff(TH) = g2

dNT
p−3
H is the effective coupling constant and c̃((g2

dNT
p−3
H ), N, · · · )

denotes a generic function of the dimensionless parameters.

Next let us consider correlation functions, in particular of the gluon operator O =

−1
4Tr(F 2 + · · · ). In a theory which is conformally invariant the two point function of any

operator of dimension ∆ behaves as

〈O(x)O(y)〉 = f(g2
YMN,N, · · · )

1

|x− y|2∆ , (4.13)

where f(g2
YMN,N, · · · ) denotes an arbitrary function of the dimensionless parameters. Now

consider the constraints on a two point function in a theory with generalized conformal

invariance; these are far less restrictive, with the correlator constrained to be of the form:

〈O(x)O(0)〉 = f̃(g2
eff (x), N, · · · ) 1

|x|2∆ . (4.14)

where g2
eff(x) = g2

dN |x|3−p and f̃(g2
eff(x), N, · · · ) is an arbitrary function of these (dimen-

sionless) variables. Note that the scaling dimension of the gluon operator as defined above

is 4. Both (4.13) and (4.14) are over-simplified as even in a conformal field theory the

renormalized correlators can depend on the renormalization group scale µ. For example,

for p = 3 the renormalized two point function of the dimension four gluon operator is

〈O(x)O(0)〉 = f(g2
YMN,N)�3

(

1

|x|2 log(µ2x2)

)

, (4.15)

where note that the renormalized version R 1
|x|8

of 1
|x|8

is given by:

R
(

1

|x|8
)

= − 1

3 · 28
�

3

(

1

|x|2 log(µ2x2)

)

. (4.16)

R( 1
|x|8

) and 1
|x|8

are equal when x 6= 0 but they differ by infinite renormalization at x = 0. In

particular, it is only R 1
|x|8

that has a well defined Fourier transform, given by p4 log(p2/µ2),

– 15 –



J
H
E
P
0
9
(
2
0
0
8
)
0
9
4

which may be obtained using the identity
∫

d4xeipx 1

|x|2 log(µ2x2) = −4π2

p2
log(p2/µ2). (4.17)

(see appendix A, [40]). Thus the correlator in a theory with generalized conformal invari-

ance is

〈O(x)O(0)〉 = R
(

f̃
(

g2
eff(x), µ|x|, N, · · ·

) 1

|x|2∆
)

(4.18)

Note that this is of the same form as a two point function of an operator with definite

scaling dimension in any quantum field theory; the generalized conformal structure does

not restrict it further, although as discussed above the underlying structure does relate two

point functions via Ward identities.

The general form of the two point function (4.18) is compatible with the holographic

results discussed later. One can also compute the two point function to leading (one loop)

order in perturbation theory, giving:

〈O(x)O(0)〉 = 〈: Tr(F 2)(x) :: Tr(F 2)(0) :〉 ∼ R
(

g4
eff(x)

|x|8
)

, (4.19)

which is also compatible with the general form. (Note that although the complete operator

includes in addition other bosonic and fermionic terms the latter do not contribute to the

two point function at one loop, whilst the former contribute only to the overall normaliza-

tion.) One shows this result as follows. The gauge field propagator for SU(N) in Feynman

gauge in momentum space is

〈Aa
bµ(k)Ac

dν(−k)〉 = ig2
d

(

δa
dδ

c
b −

1

N
δa
b δ

c
d

)

ηµν

|k|2 , (4.20)

where (a, b) are color indices. Then the one loop contribution to the correlation function

in momentum space reduces (at large N) to

〈O(k)O(−k)〉 ∼ N2(d− 1)|k|4
∫

ddq
1

|q|2|k − q|2 . (4.21)

Using the integral

I =

∫

ddq
1

|q|2α|k − q|2β
(4.22)

=
Γ(α+ β − d/2)Γ(d/2 − β)Γ(d/2 − α)

Γ(α)Γ(β)Γ(d − α− β)
|k|d−2α−2β ,

one finds that

〈O(k)O(−k)〉 ∼ N2(g2
d)

2(d− 1)|k|d Γ(2 − d/2)(Γ(d/2 − 1))2

Γ(d− 2)
. (4.23)

This is finite for d odd, as expected given the general result that odd loops are finite in

odd dimensions; dimensional regularization when d is even results in a two point function

of the form N2g4
d|k|d log(|k2|). Fourier transforming back to position space results in

〈O(x)O(0)〉 ∼ R
(

g4
eff(x)

|x|8
)

, (4.24)
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where again in even dimensions the renormalized expression is of the type given in (4.16).

This is manifestly consistent with the form (4.18).

The structure that we find at weak coupling is also visible at strong coupling. The

gravitational solution is the linear dilaton AdSd+1 solutions in (3.7) and conformal sym-

metry is broken only by the dilaton profile. Therefore the background is invariant under

generalized conformal transformations in which one also transforms the string coupling gs

appropriately. This generalized conformal structure was discussed in [22 – 24], particularly

in the context of D0-branes.

5. Holographic renormalization

In this section we will determine how gauge theory data is extracted from the asymptotics

of the decoupled non-conformal brane backgrounds, following the same steps as in the

asymptotically AdS case. In particular, one first fixes the non-normalizable part of the

asymptotics: we will consider solutions which asymptote to a linear dilaton asymptotically

locally AdS background. Next one needs to analyze the field equations in the asymptotic

region, to understand the asymptotic structure of these backgrounds near the boundary.

Given this analysis, one is ready to proceed with holographic renormalization. Recall

that the aim of holographic renormalization is to render well-defined the definition of the

correspondence: the onshell bulk action with given boundary values Φ(0) for the bulk fields

acts as the generating functional for the dual quantum field theory in the presence of sources

Φ(0) for operators O. The asymptotic analysis allows one to isolate the volume divergences

of the onshell action, which can then be removed with local covariant counterterms, leading

to a renormalized action. The latter allows one to extract renormalized correlators for the

quantum field theory.

5.1 Asymptotic expansion

In determining how gauge theory data is encoded in the asymptotics of the non-conformal

brane backgrounds the first step is to understand the asymptotic structure of these back-

grounds in the asymptotic region near ρ = 0 where the solution becomes a linear dilaton

locally AdS background. Let us expand the metric and dilaton as:

ds2 =
dρ2

4ρ2
+
gij(x, ρ)dx

idxj

ρ
, (5.1)

φ(x, ρ) = α log ρ+
κ(x, ρ)

γ
,

where we expand g(x, ρ) and κ(x, ρ) in powers of ρ:

g(x, ρ) = g(0)(x) + ρg(2)(x) + · · · (5.2)

κ(x, ρ) = κ(0)(x) + ρκ(2)(x) + · · ·

For p = 3 we should instead expand the scalar field as

φ(x, ρ) = κ(0)(x) + ρκ(2)(x) + · · · , (5.3)

– 17 –



J
H
E
P
0
9
(
2
0
0
8
)
0
9
4

since α = γ = 0. Note that by allowing (g(0), κ(0)) to be generic the spacetime is only

asymptotically locally AdS.

Consider first the case of p = 3, so that the action is Einstein gravity in the presence

of a negative cosmological constant, and a massless scalar. The latter couples to the

dimension four operator Tr(F 2). The metric is expanded in the Fefferman-Graham form,

with the scalar field expanded accordingly. By the standard rules of AdS/CFT g(0) acts as

the source for the stress energy tensor and κ(0) acts as the source for the dimension four

operator, i.e. it corresponds to the Yang-Mills coupling. The vevs of these operators are

captured by subleading terms in the asymptotic expansion.

For general p an analogous relationship should hold: g(0) sources the stress energy

tensor and the scalar field determines the (dimensionful) gauge coupling. More precisely,

the bulk field that is dual to the operator O in (4.5) is

Φ(x, ρ) = exp (χφ(x, ρ)) = ρ−
1
2
(p−3)

(

Φ(0)(x) + ρΦ(2)(x) + · · ·
)

(5.4)

Φ(0)(x) = exp

(

−(p− 5)

(p− 3)
κ(0)(x)

)

(5.5)

The Φ(0) appearing here is identified with Φ(0) in (4.1). It will be convenient however to

work on the gravitational side with φ(x, ρ) instead of Φ(x, ρ).

In the asymptotic expansion we fix the non-normalizable part of the asymptotics, and

the vevs should be captured by subleading terms. One now needs to show that such an

expansion is consistent with the equations of motion, and what terms occur in the expansion

for given (α, β, γ).

Substituting the scalar and the metric given in (5.1) into the field equations (3.11)

gives

−1

4
Tr(g−1g′)2 +

1

2
Trg−1g′′ + κ′′ +

(

1 − β

γ2

)

(κ′)2 = 0, (5.6)

−1

2
∇ig′ij +

1

2
∇j(Trg−1g′) +

(

1 − β

γ2

)

∂jκκ
′ + ∂jκ

′ − 1

2
g′j

k
∂kκ = 0, (5.7)

[

−Ric(g)−(d−2−2αγ)g′−Tr(g−1g′)g+ρ(2g′′−2g′g−1g′+Tr(g−1g′)g′)
]

ij
+

+∇i∂jκ+

(

1 − β

γ2

)

∂iκ∂jκ− 2(gij − ρg′ij)κ
′ = 0, (5.8)

4ρ(κ′′ + (κ′)2) + (8αγ + 2(2 − d))κ′ + ∇2κ+ (∂κ)2 + 2Tr(g−1g′)(αγ + ρκ′) = 0, (5.9)

where differentiation with respect to ρ is denoted with a prime, ∇i is the covariant derivative

constructed from the metric g and d = p + 1 is the dimension of the space orthogonal to

ρ. Note that coefficients in these equations are polynomials in ρ implying that this system

of equations admits solutions with g(x, ρ) and κ(x, ρ) being regular functions of ρ and this

justifies (5.2). To solve these equations one may successively differentiate the equations

w.r.t. ρ and then set ρ = 0.

Let us first recall how these equations are solved in the pure gravity, asymptotically
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locally AdSd+1 case, i.e. when the scalar is trivial. Then the equations become

−1

4
Tr(g−1g′)2 +

1

2
Trg−1g′′ = 0;

−1

2
∇ig′ij +

1

2
∇j(Trg−1g′) = 0 (5.10)

[

−Ric(g) − (d− 2)g′ − Tr(g−1g′)g + ρ(2g′′ − 2g′g−1g′ + Tr(g−1g′)g′)
]

ij
= 0,

The structure of the expansions depends on whether d is even or odd. For d odd, the

expansion is of the form

g(x, ρ) = g(0)(x) + ρg(2)(x) + · · · + ρd/2g(d)(x) + · · · . (5.11)

Terms with integral powers of ρ in the expansion are determined locally in terms of g(0)
but g(d)(x) is not determined by g(0), except for its trace and divergence, i.e. gij

(0)
g(d)ij and

∇ig(d)ij , which are forced by the field equations to vanish. In this case g(d)(x) determines

the vev of the dual stress energy tensor, whose trace must vanish as the theory is conformal

and there is no conformal anomaly in odd dimensions. The fact that g(d) is divergenceless

leads to the conservation of the stress energy tensor.

For d even, the structure is rather different:

g(x, ρ) = g(0)(x) + ρg(2)(x) + · · · + ρd/2(g(d)(x) + h(d)(x) log ρ) + · · · . (5.12)

In this case one needs to include a logarithmic term to satisfy the field equations; the

coefficient of this term is determined by g(0) whilst only the trace and divergence of g(d)(x)

are determined by g(0). This structure reflects the fact that the trace of the stress energy

tensor of an even-dimensional conformal field theory on a curved background is non-zero

and picks up an anomaly determined in terms of g(0); the explicit expression for the stress

energy tensor in terms of (g(0), g(d)) is rather more complicated than in the other case but

it is such that the divergence of g(d) leads again to conservation of the stress energy tensor.

Let us return now to the cases of interest. As mentioned above, the field equations

are solved by successively differentiating the equations w.r.t. ρ and then setting ρ to zero.

This procedure leads to equations of the form

c(n, d)g(2n)ij = f(g(2k)ij , κ(2k)), k < n (5.13)

where the right hand side depends on the lower order coefficients and c(n, d) is a numerical

coefficient that depends on n and d. If this coefficient is non-zero, one can solve this

equation to determine g(n)ij . However, in some cases this coefficient is zero and one has to

include a logarithmic term at this order for the equations to have a solution. An example

of this is the case of pure gravity with d even, where c(d/2, d) = 0. Furthermore, note that

since in (5.8) -(5.9) only integral powers of ρ enter, likewise only integral powers in (5.2)

will depend on g(0) and κ(0). In general however non-integral powers can also appear at

some order and one must determine these terms separately. An example of this is the case

of pure gravity with d odd reviewed above, where a half integral power of ρ appears at

order ρd/2.
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Let us first consider when one needs to include non-integral powers in the expansion.

Let us assume that ρσ is the lowest non-integral power that appears in the asymptotic

expansion

κ(x, ρ) = κ(0) + ρκ(2) + · · · + ρσκ(2σ) + · · · (5.14)

gij(x, ρ) = g(0)ij + ρg(2)ij + · · · + ρσg(2σ)ij + · · ·

Differentiating the scalar equation (5.9) [σ] times, where [σ] is the integer part of σ, and

taking ρ→ 0 after multiplying with ρ1+[σ]−σ one obtains

(2σ + 4αγ − d)κ(2σ) + αγTrg(2σ) = 0, (5.15)

Similarly, equation (5.8) yields,

(2σ − d+ 2αγ)g(2σ)ij − (Trg(2σ) + 2κ(2σ))g(0)ij = 0. (5.16)

which upon taking the trace becomes

−dκ(2σ) + (σ − d+ αγ)Trg(2σ) = 0, (5.17)

If the determinant of the coefficients of the system of equation (5.15)–(5.17) is non-zero,

D = (2σ + 4αγ − d)(σ − d+ αγ) + αγd 6= 0 (5.18)

the only solution of these equations is

Trg(2σ) = κ(2σ) = 0 (5.19)

which then using (5.16) implies

g(2σ)ij = 0 (5.20)

i.e. in these cases no non-integral power appears in the expansion.

On the other hand, when D = 0 equations (5.17)–(5.15) admit a non-trivial solution.

The two solution of D = 0 are σ1 = d/2 − αγ and σ2 = 2(d/2 − αγ). Clearly, σ2 > σ1 and

when σ2 in non-integer so is σ1, so a non-integer power first appears at:

σ =
d

2
− αγ (5.21)

When this holds equations (5.17)–(5.15) reduce to

Trg(2σ) + 2κ(2σ) = 0. (5.22)

and the coefficient of g(2σ)ij in (5.16) vanishes, so apart from its trace, these equations leave

g(2σ)ij undetermined. The remaining Einstein equation (5.7) also imposes a constraint on

the divergence of the terms occurring at this order, as will be discussed later. To summarize,

the expansion contains a non-integer power of ρσ in the following cases

σ =
p− 7

p− 5
⇒ D0 : σ = 7/5; D1, F1 : σ = 3/2; D2 : σ = 5/3, (5.23)
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and the coefficient multiplying this power in only partly constrained. As we will see, this

category is the analogue of even dimensional asymptotically AdS backgrounds, which are

dual to odd dimensional boundary theories.

The second case to discuss is the case of only integral powers. In this case the unde-

termined term occurs at an integral power ρσ with

σ =
p− 7

p− 5
⇒ D3 : σ = 2; D4 : σ = 3, (5.24)

and logarithmic terms need to be included in the expansions. In these cases the com-

bination (Trg(2σ) + 2κ(2σ)) is determined by g(0) and κ(0). This category is analogous

to odd-dimensional asymptotically AdS backgrounds, which are dual to even-dimensional

boundary theories. The remaining Einstein equation (5.7) also imposes a constraint on the

divergence of the terms occurring at this order.

Actually one can see on rather general grounds why the undetermined terms occur at

these powers: the undetermined terms will relate to the vev of the stress energy tensor,

which is of dimension (p + 1) for a (p + 1)-dimensional field theory. However, the overall

normalization of the action behaves as l
(p−3)2/(5−p)
s , and therefore on dimensional grounds

the vev should sit in the g(2σ)ρ
σ term where

σ = (p+ 1) +
(p− 3)2

(5 − p)
=

(p − 7)

(p − 5)
, (5.25)

which agrees with the discussion above. Put differently we can compare the power of the

first undetermined term to pure AdS and notice that it is shifted by −αγ = − (p−3)2

2(p−5) (for

both Dp-branes and the fundamental string). This is just what is needed to offset the

background value of the eγφ term multiplying the Einstein-Hilbert action in (3.4), in order

to ensure that all divergent terms in the action are still determined by the asymptotic field

equations.

One should note here that the case of p = 6 is outside the computational framework

discussed above. In this case the prefactor in the action is of positive mass dimension nine,

whilst the stress energy tensor in the dual seven-dimensional theory must be of dimension

seven. Therefore one finds a (meaningless) negative value for σ, indicating that one is not

making the correct asymptotic expansion. In other words, one finds that the “subleading

terms” are more singular than the leading term.

5.2 Explicit expressions for expansion coefficients

In all cases of interest 2σ > 2 and thus there are g(2) and κ(2) terms. Evaluating (5.9)

and (5.8) at ρ = 0 gives in the case of β = 0 and 2αγ = −1 (relevant for D1-branes,

fundamental strings and D4-branes):

κ(2) =
1

2d

(

∇2κ(0) + gij
(0)∂iκ(0)∂jκ(0) +

1

2(d− 1)
R(0)

)

, (5.26)

g(2)ij =
1

d− 1

(

−R(0)ij +
1

2d
R(0)g(0)ij + (∇{i∂j}κ)(0) + ∂{iκ(0)∂j}κ(0)

)
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Here the parentheses in a quantity A{ab} denote the traceless symmetric tensor and ∇i is

the covariant derivative in the metric g(0)ij .

If β 6= 0, as for p = 0, 2, the expressions are slightly more involved:

κ(2) = − 1

M

(

2αγR(0) − 2(d− 1)∇2κ(0) +

(

2αβ

γ
− 2d+ 2

)

(gij
(0)∂iκ(0)∂jκ(0))

)

,

g(2)ij =
1

d− 2αγ − 2

(

−R(0)ij + ∇i∂jκ(0) +

(

1 − β

γ2

)

∂iκ(0)∂jκ(0) (5.27)

+
γ2 − β

2(γ2d− βd+ β)
g(0)ij

(

R(0) − 2∇2κ(0) − 2

(

1 − β

2γ2

)

(gij
(0)∂iκ(0)∂jκ(0))

))

,

M ≡ 16α2β − 2(d− 1)(8αγ + 4 − 2d) =
16(9 − p)

(5 − p)2
.

The final equality, expressing the coefficient M in terms of p, holds for the Dp-branes of

interest here.

5.2.1 Category 1: undetermined terms at non-integral order

Let us first consider the case where the undetermined terms occur at non-integral order.

In the cases of p = 0, 1, 2 the terms given above in (5.27) are the only determined

terms. The underdetermined terms appear at order ρ(p−7)/(p−5) and satisfy the constraints

2κ(2σ) + Trg(2σ) = 0, σ =
p− 7

p− 5
(5.28)

∇ig(2σ)ij − 2

(

1 − β

γ2

)

∂jκ(0)κ(2σ) + g(2σ)ij∂
iκ(0) = 0. (5.29)

We will see that the trace and divergent constraints translate into conformal and diffeo-

morphism Ward identities respectively.

5.2.2 Category 2: undetermined terms at integral order

Let us next consider the case where the undetermined terms occur at integral order: this

includes the D3 and D4 branes. Explicit expressions for the conformal cases, including the

case of D3-branes, are given in [6]. For the D4-branes, the equations at next order can be

solved to determine κ(4) and g(4)ij :

κ(4) =
1

8

(

(∇2κ)(2) + 6κ2
(2) + (∂κ)2(2) +

1

2
Trg2

(2) + 2κ(2)Trg(2)

)

, (5.30)

g(4)ij =
1

4

[(

2κ2
(2) +

1

2
Trg2

(2)

)

g(0)ij −R(2)ij − 2(g2
(2))ij + (∇i∂jκ)(2) + 2∂iκ(2)∂jκ(0)

]

.

where we introduce the notation

A[g(x, ρ), κ(x, ρ)] = A(0)(x) + ρA(2)(x) + ρ2A(4)(x) + · · · (5.31)

for composite quantities A[g, κ] of g(x, ρ) and κ(x, ρ). For (5.30) we need the coefficients

of A = {∇2κ, (∂κ)2, Rij}. The explicit expression for these coefficients can be worked out
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straightforwardly using the asymptotic expansion of g(x, ρ) and κ(x, ρ) and we give these

expressions for the Christoffel connections and curvature coefficients in appendix A. Note

also that we use the compact notation

(g2
(2))ij ≡ (g(2)g

−1
(0)
g(2))ij, Tr(g(2n)) ≡ Tr(g−1

(0)
g(2n)). (5.32)

Proceeding to the next order, one finds that the expansion coefficients κ(6) and g(6)ij
cannot be determined independently in terms of lower order coefficients because after

further differentiating the highest derivative terms in (5.8) and (5.9) both vanish. Only the

combination (2κ(6)+Trg(6)) is fixed, along with a constraint on the divergence. Furthermore

one has to introduce logarithmic terms in (5.2) for the equations to be satisfied, namely

g(x, ρ) = g(0)(x) + ρg(2)(x) + ρ2g(4)(x) + ρ3g(6)(x) + ρ3 log(ρ)h(6)(x) + · · · (5.33)

κ(x, ρ) = κ(0)(x) + ρκ(2)(x) + ρ2κ(4)(x) + ρ3κ(6)(x) + ρ3 log(ρ)κ̃(6)(x) + · · ·

For the logarithmic terms one finds

κ̃(6) = − 1

12

[

(∇2κ)(4) + (∂κ)2(4) + 20κ(2)κ(4) −
1

2
Trg3

(2) + Trg(2)g(4) (5.34)

+2κ(2)(−Trg2
(2) + 2Trg(4)) + 4κ(4)Trg(2)

]

,

h(6)ij = − 1

12

[

− 2R(4)ij + (−Trg3
(2) + 2Trg(2)g(4) + 8κ(2)κ(4))g(0)ij + 2Trg(2)g(4)ij

−8(g(4)g(2))ij − 8(g(2)g(4))ij + 4g3
(2)ij + 2(∇i∂jκ)(4) + 2(∂iκ∂jκ)(4) + 4κ(2)g(4)ij

]

,

Note that these coefficients satisfy the following identities

Trh(6) + 2κ̃(6) = 0, (5.35)

gki
(0)(∇kh(6)ij + h(6)ij∂kκ(0)) − 2∂jκ(0)κ̃(6) = 0. (5.36)

Furthermore, κ(6),Trg(6) and ∇ig(6)ij are constrained by the following equations,

2κ(6) + Trg(6) = −1

6
(−4Trg(2)g(4) + Trg3

(2) + 8κ(2)κ(4)), (5.37)

∇ig(6)ij − 2∂jκ(0)κ(6) + g(6)ij∂
iκ(0) = Tj, (5.38)

where Tj is locally determined in terms of (g(2n), κ(2n)) with n ≤ 2,

Tj = ∇iAij − 2∂jκ(0)

(

A− 2

3
κ3

(2) − 2κ(2)κ(4)

)

+Aij∂
iκ(0) (5.39)

+
1

6
Tr(g(4)∇jg(2)) +

2

3
(κ(4) + κ2

(2))∂jκ(2),
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with

Aij =
1

3

(

(2g(2)g(4) + g(4)g(2))ij − (g3
(2))ij (5.40)

+
1

8
(Tr(g2

(2)) − Trg(2)(Trg(2) + 4κ(2)))g(2)ij

−(Trg(2) + 2κ(2))(g(4)ij −
1

2
(g2

(2))ij)

−
(

1

8
Trg(2)Trg2

(2) −
1

24
(Trg(2))

3 − 1

6
Trg3

(2) +
1

2
Trg(2)g(4)

)

g(0)ij

+

(

1

4
κ(2)((Trg(2))

2 − Trg2
(2)) −

4

3
κ3

(2) − 2κ(2)κ(4)

)

g(0)ij

)

A =
1

6

(

−
(

1

8
Trg(2)Trg2

(2) −
1

24
(Trg(2)

)3

− 1

6
Trg3

(2) +
1

2
Trg(2)g(4))

−32

3
κ3

(2) − 6κ(2)κ(4) − κ2
(2)Trg(2) − 2κ(4)Trg(2)

)

.

We would now like to integrate the equations (5.37) and (5.38). Following the steps

in [6], it is convenient to express g(6)ij and κ(6) as

g(6)ij = Aij −
1

24
Sij + tij; (5.41)

κ(6) = A− 1

24
S − 2κ(2)κ(4) −

2

3
κ3

(2) + ϕ,

where (Sij , S) are local functions of g(0), κ(0),

Sij = (∇2 + ∂mκ(0)∇m)Iij − 2∂mκ(0)∂(iκ(0)Ij)m + 4∂iκ(0)∂jκ(0)I (5.42)

+2RkiljI
kl − 4I(∇i∂jκ(0) + ∂iκ(0)∂jκ(0)) + 4(g(2)g(4) − g(4)g(2))ij

+
1

10
(∇i∂jB − g(0)ij(∇2 + ∂mκ(0)∂m)B)

+
2

5
B + g(0)ij

(

− 2

3
Trg3

(2) −
4

15
(Trg(2))

3 +
3

5
Trg(2)Trg2

(2)

−8

3
κ3

(2) −
8

5
κ(2)(Trg(2))

2 − 4

5
κ2

(2)Trg(2) +
6

5
κ(2)Trg2

(2)

)

,

S = (∇2 + ∂mκ(0)∂m)I + ∂iκ(0)∂jκ(0)I
ij − 2(∂κ)2(0)I (5.43)

−(∇k∂lκ(0) + ∂kκ(0)∂lκ(0))I
kl − 1

20
(∇2 + ∂mκ(0)∂m)B

+
2

5
Bκ(2) −

4

3
κ3

(2) −
4

5
κ(2)(Trg(2))

2 − 2

5
κ2

(2)Trg(2) +
3

5
κ(2)Trg(2)

2,

Iij =

(

g(4) −
1

2
g2
(2) +

1

4
g(2)(Trg(2) + 2κ(2))

)

ij

+
1

8
g(0)ijB,

I = κ(4) +
1

2
κ2

(2) +
1

4
κ(2)Trg(2) +

B

16
,

B = Trg2
(2) − Trg(2)(Trg(2) + 4κ(2)).
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Note that these definitions imply the following identities

∇iSij − 2∂jκ(0)S + Sij∂
iκ(0) = −4(Tr(g(4)∇jg(2)) + 4(κ(4) + κ2

(2))∂jκ(2)); (5.44)

Tr(Sij) + 2S = −8Tr(g(2)g(4) − 32κ(2)(κ
2
(2) + κ(4)).

Now, these definitions imply that tij defined in (5.41) is a symmetric tensor: Aij

contains an antisymmetric part but this is canceled by a corresponding antisymmetric part

in Sij. Inserting (5.41) in (5.37) one finds that the quantities (tij , ϕ) satisfy the following

divergence and trace constraints:

∇itij = 2∂jκ(0)ϕ− tij∂
iκ(0); (5.45)

Trt+ 2ϕ = −1

3

(

1

8
(Trg(2))

3 − 3

8
Trg(2)Trg2

(2) +
1

2
Trg3

(2) − Trg(2)g(4)

−3

4
κ(2)(Trg2

(2) − (Trg(2))
2) − 4κ(2)κ(4) + 2κ3

(2)

)

.

We will find that the one point functions are expressed in terms of (tij , ϕ) and these

constraints translate into the conformal and diffeomorphism Ward identities.

5.3 Reduction of M-branes

The D4-brane and type IIA fundamental string solutions are obtained from the reduc-

tion along a worldvolume direction of the M5 and M2 brane solutions respectively. The

boundary conditions for the supergravity solutions also descend directly from dimensional

reduction: diagonal reduction on a circle of an asymptotically (locally) AdSd+2 spacetime

results in an asymptotically (locally) AdSd+1 spacetime with linear dilaton. Therefore the

rather complicated results for the asymptotic expansions in the D4 and fundamental string

cases should follow directly from the previously derived results for AdS7 and AdS4 given

in [6], and we show that this is indeed the case in this subsection.

As discussed in section 3, solutions of the field equations of (3.12) are related to

solutions of the field equations of the action (3.4) via the reduction formula (3.15). In

the cases of F1 and D4 brane this means in particular

e4φ/3 =
1

ρ
e2κ, (5.46)

where in comparing with (5.1) one should note that α = −3/4, γ = 2/3 for both F1 and

D4. This implies that the (d+2) solution is automatically in the Fefferman-Graham gauge:

ds2d+2 =
dρ2

4ρ2
+

1

ρ
(gijdx

idxj + e2κdy2). (5.47)

Recall that for an asymptotically AdSd+2 Einstein manifold, the asymptotic expansion

in the Fefferman-Graham gauge is

ds2d+2 =
dρ2

4ρ2
+

1

ρ
Gabdx

adxb (5.48)
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where a = 1, · · · , (d+ 1) and

G = G(0)(x)+ρG(2)(x)+· · ·+ρ(d+1)/2G(d+1)/2(x)+ρ
(d+1)/2 log(ρ)H(d+1)/2(x)+· · · , (5.49)

with the logarithmic term present only when (d + 1) is even. The explicit expression for

G(2)(x) in terms of G(0)(x) is3

G(2)ab =
1

d− 1

(

−Rab +
1

2d
RG(0)ab

)

. (5.50)

where the Rab is the Ricci tensor of G(0), etc.

Comparing (5.47) with (5.48) one obtains

Gij = gij ; Gyy = e2κ. (5.51)

In particular G(0)ij = g(0)ij and G(0)yy = e2κ(0) , so

R[G(0)]ij = R(0)ij −∇i∂jκ(0) − ∂iκ(0)∂jκ(0); (5.52)

R[G(0)]yy = e2κ(0)(−∇i∂iκ(0) − ∂iκ(0)∂
iκ(0)),

with R[G(0)]yi = 0. Substituting into (5.50) gives

G(2)ij =
1

d− 1

(

−R(0)ij +
1

2d
R(0)g(0)ij + (∇{i∂j}κ)(0) + ∂{iκ(0)∂j}κ(0)

)

; (5.53)

G(2)yy = e2κ(0)

(

1

2d(d − 1)
R(0) +

1

d
(∇2κ(0) + (∂κ(0))

2)

)

,

with G(2)yi = 0. We thus find exact agreement between G(2)ij and g(2)ij in (5.26). Now

using

Gyy = e2κ = e(2κ(0)+2ρκ(2)+··· ) = e2κ(0)(1 + 2ρκ(2) + · · · ) (5.54)

one determines κ(2) to be exactly the expression given in (5.26).

Now restrict to the asymptotically AdS4 case; the next coefficient in the asymptotic

expansion occurs at order ρ3/2, in G(3)ab, and is undetermined except for the vanishing of

its trace and divergence:

Gab
(0)G(3)ab = 0; DaG(3)ab = 0. (5.55)

Reducing these constraints leads immediately to

gij
(0)g(3)ij + 2κ(3) = 0; (5.56)

∇ig(3)ij − 2∂jκ(0)κ(3) + g(3)ij∂
iκ(0) = 0,

in agreement with (5.28) and (5.29).

Similarly if one considers the asymptotically AdS7 case, the determined coefficients

G(4) and H(6) reduce to give (g(4), κ(4)) and (h(6), κ̃(6)) respectively. Furthermore, the trace

of G(6) fixes the combination (2κ(6) +Trg(6)). One can show that all explicit formulae agree

precisely with the dimensional reduction of the formulae in [6]; the details are discussed in

appendix C.

3Note that the conventions for the curvature used here differ by an overall sign from those in [6].
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5.4 Renormalization of the action

Having derived the general form of the asymptotic expansion one can now proceed to holo-

graphic renormalization, following the discussion in [6]. In this method one substitutes the

asymptotic expansions back into the regulated action and then introduces local covariant

counterterms to cancel the divergences and renormalise the action. Whilst this method is

conceptually very simple, in practice it is rather cumbersome for explicit computations. A

more efficient method based on a radial Hamiltonian formalism [11, 12] will be discussed

in the next section.

Let us choose an illustrative yet simple example to demonstrate this method of holo-

graphic renormalization: we will work out the renormalised on-shell action and compute

the one-point function of the energy-momentum tensor and the operator O for the case

p = 1, both fundamental strings and D1-branes.

Since in this case β = 0, Φ̂ ≡ eγφ behaves like a Lagrange multiplier and the bulk

part of the action vanishes on-shell. The only non-trivial contribution comes then from the

Gibbons-Hawking boundary term:

Sboundary = −L
∫

ρ=ǫ
d2x

√
h2Φ̂K, (5.57)

where hij is the induced metric on the boundary and K is the trace of the extrinsic

curvature. Since (5.57) is divergent we regularise the action by evaluating it at ρ = ǫ.

We would like now to find counterterms to remove the divergences in (5.57). From the

discussion in section 5.1 we know the asymptotic expansion for Φ and hij(x, ρ) = gij(x, ρ)/ρ:

Φ̂ =
eκ(0)

√
ρ

(1 + ρκ(2) + ρ3/2κ(3) + · · · ), (5.58)

h =
1

ρ
(g(0) + ρg(2) + ρ3/2g(3) + · · · ),

where κ(3) and g(3) are the lowest undetermined coefficients. Note that the expansions are

the same for both fundamental strings and D1-branes, since in both cases αγ = −1/2.

Inserting the expansion (5.58) in (5.57) we find for the divergent part

Sdiv = −4L

∫

ρ=ǫ
d2xeκ(0)

√

g(0)(ǫ
−3/2 + ǫ−1/2κ(2)), (5.59)

using the formula

K = d− ρTr(g−1g′) (5.60)

for the trace of the extrinsic curvature in the asymptotically AdSd+1 background. The

trace term here cancels against the one in the expansion of the determinant.

From (5.58) and (5.26) we find

√

g(0) = ρ
√
h

(

1 +
1

4(d− 1)
R[h]

)

, (5.61)

which allows us to write the counterterms in a gauge-invariant form:

Sct = −Sdiv = 4L

∫

ρ=ǫ
d2x

√
hΦ̂

(

1 +
1

4
R[h]

)

. (5.62)
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The renormalised action is then

Sren[g(0), κ(0)] = lim
ǫ→0

Ssub[h(x, ǫ), Φ̂(x, ǫ)); ǫ] (5.63)

where

Ssub = Sbulk + Sboundary + Sct

= −L
[
∫

ρ≥ǫ
d3x

√
gΦ̂(R+ C) +

∫

ρ=ǫ
d2x

√
hΦ̂(2K − 4 −R[h])

]

. (5.64)

This allows us to compute the renormalised vevs of the operator dual to Φ̂ and the stress-

energy tensor. For the former, only the boundary part contributes, since R+ C = 0 from

the equation of motion for Φ̂. It can be easily checked that the divergent parts cancel and

we obtain the finite result

〈O〉 =
1

√
g(0)

δSsub

δΦ(0)
= −1

2
e3κ(0) lim

ǫ→0

(

1

ǫ3/2
√
h

δSsub

δΦ̂

)

=
3

2
e3κ(0)LTrg(3) = −3e3κ0Lκ(3).

(5.65)

where we used (5.4) and the definition of Φ̂. The vev of the stress-energy tensor 〈Tij〉 =

limǫ→0 Tij [h] gets a contribution from the bulk term as well. We can split it into the

contribution of the regularised action and the counterterms

Tij [h] = T reg
ij + T ct

ij , (5.66)

where

T reg
ij [h] = 2L[Φ̂(Khij −Kij) − 2ρ∂ρΦ̂hij ], (5.67)

T ct
ij [h] = 2L

[

Φ̂

(

Rij −
1

2
Rhij − 2hij

)

+ ∇2Φ̂hij −∇i∂jΦ̂

]

.

One can again check that the divergent terms cancel and obtain the finite contribution

〈Tij〉 = lim
ǫ→0

(

2√
h

δSren

δhij

)

= 3Leκ(0)g(3)ij . (5.68)

Note that the expressions for the vevs take the same form for both D1-brane and funda-

mental string cases. The one point functions satisfy the following Ward identities:

〈T i
i 〉 − 2Φ(0)〈O〉 = 0. (5.69)

∇i〈Tij〉 + ∂jΦ(0)〈O〉 = 0.

To derive these one needs the trace and divergence identities given in (5.28) and (5.29) and

the relation Φ(0) = e−2κ(0) (see (5.4)). These Ward identities indeed agree exactly with

what we derived on the QFT side, (4.7)–(4.8).

The first variation of the renormalized action yields the relation between the 1-point

functions and non-linear combinations of the asymptotic coefficients. The one point func-

tions are obtained in the presence of sources, so higher point functions can be obtained by

further functional differentiation with respect to sources.
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One should note here that the local boundary counterterms are required, irrespectively

of the issue of finiteness, by the more fundamental requirement of the well-posedness of

the appropriate variational problem [41]. The conformal boundary of asymptotically AdS

spacetimes has a well-defined conformal class of metric rather than an induced metric. This

means that the appropriate variational problem involves keeping fixed a conformal class

and not an induced metric as in the usual Dirichlet problem for gravity in a spacetime with

a boundary. The new variational problem requires the addition of further boundary terms,

on top of the Gibbons-Hawking term. In the context of asymptotically AdS spacetimes

(with no linear dilaton) these turn out to be precisely the boundary counterterms, see [41]

for the details and a discussion of the subtleties related to conformal anomalies.

5.5 Relation to M2 theory

In the case of fundamental strings these formulae again follow directly from dimensional

reduction of the AdS4 case, since for the latter the renormalized stress energy tensor is [6]

〈Tab〉 = 3LMG(3)ab. (5.70)

Recalling the dimensional reduction formula (5.51), and noting that

LM = Leκ0 , (5.71)

one finds immediately that

〈Tij〉 = 3Leκ0g(3)ij , (5.72)

in agreement with (5.68). Noting that Gyy = e4φ/3ρ = Φ̂2ρ one finds

〈Tyy〉 = 6Le3κ0κ(3) = −2〈O〉, (5.73)

in agreement with (5.65). The first Ward identity in (5.69) is thus an immediate conse-

quence of the conformal Ward identity of the M2 brane theory, i.e. the tracelessness of

the stress energy tensor. The second Ward identity in (5.69) similarly follows from the

vanishing divergence of the stress energy tensor in the M2-brane theory.

5.6 Formulae for other Dp-branes

It is straightforward to derive analogous formulae for the other Dp-branes. Note that in

general there is also a bulk contribution to the on-shell action

Son−shell = L
4αβ(d− 2αγ)

h

∫

ρ≥ǫ
dd+1x

√
geγφ + L

∫

ρ=ǫ
ddx

√
heγφ2K (5.74)

where hij is the induced metric on the boundary, K is the trace of the extrinsic curvature

and the action is regularised at ρ = ǫ. Focusing first on the cases p < 3 the divergent

terms are:

Sdiv = −L
∫

ρ=ǫ
ddx
√

g(0)e
κ(0)ǫ−d/2+αγ

(

2d− 4αβ

γ
+

(

− 4αβ(d − 2αγ)

γ(d− 2αγ − 2)
+ 2d

)

ρκ(2)

+

(

− 2αβ(d − 2αγ)

γ(d− 2αγ − 2)
+ d− 2

)

ρTrg(2)

)

, (5.75)
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which can be removed with the counterterm action

Sct = L

∫

ρ=ǫ
ddx

√
heγφ

(

2d− 4αβ

γ
+ CR(R̂[h] + β(∂iφ)2)

)

(5.76)

= L

∫

ρ=ǫ
ddx

√
heγφ

(

2(9 − p)

5 − p
+

5 − p

4
(R̂[h] + β(∂iφ)2)

)

CR ≡ γ2 − β

dγ2 − dβ − γ2 + 2β
=

5 − p

4
.

Again for convenience we give the formulae both in terms of (α, β, γ) and for the specific

cases of interest here, the Dp-branes. The renormalised vevs of the operator4 Oφ dual to

φ and the stress-energy tensor can now be computed giving:

〈Oφ〉 = 2σLeκ(0)
1

α
κ(2σ), (5.77)

〈Tij〉 = 2σLeκ(0)g(2σ)ij .

Using (5.28) and (5.29) one obtains

0 = 〈T i
i 〉 + 2α〈Oφ〉 = 〈T i

i 〉 + (p − 3)Φ(0)〈O〉 (5.78)

0 = ∇i〈Tij〉 −
1

γ
∂jκ(0)〈Oφ〉 = ∇i〈Tij〉 + ∂jΦ(0)〈O〉, (5.79)

where in the second equality we use the relation between κ(0) and Φ(0) in (5.4) which

implies in particular that 〈Oφ〉 = χΦ(0)〈O〉. These are the anticipated dilatation and

diffeomorphism Ward identities.

Next let us consider the case of D4-branes, for which one needs more counterterms:

Sct = L

∫

ρ=ǫ
d5x

√
heγφ

(

10 +
1

4
R̂[h] +

1

32
(R̂[h]ij − γ(∇̂i∂jφ+ ∂iφ∂jφ))2 (5.80)

+
1

32
γ2(∇̂2φ+ (∂iφ)2)2 − 3

320
(R̂[h] − 2γ(∇̂2φ+ (∂iφ)2))2 + a(6) log ǫ

)

,

where the coefficient of the logarithmic term a(6) is given by

a(6) = 6Trh(6);

=
1

8
(Trg(2))

3 − 3

8
Trg(2)Trg2

(2) +
1

2
Trg3

(2) − Trg(2)g(4) (5.81)

−3

4
κ(2)Trg2

(2) +
3

4
κ(2)(Trg(2))

2 − 4κ(2)κ(4) − 2κ3
(2).

Note that in cases such as the D4-brane, where one needs to compute many counterterms,

it is rather more convenient to use the Hamiltonian formalism, which will be discussed in

the next section. We will also discuss the structure of this anomaly further in the following

section.

4Note that 〈Oφ〉 = χΦ(0)〈O〉. This is obtained using (5.4) and the chain rule.
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The renormalised vevs of the operator dual to φ and the stress-energy tensor can now

be computed giving:

〈Oφ〉 = −Leκ(0)

(

8ϕ+
44

3
κ̃(6)

)

, (5.82)

〈Tij〉 = Leκ(0)(6tij + 11h(6)ij),

where (tij , ϕ) are defined in (5.41). Note that the contributions proportional to κ̃(6), h(6)ij

are scheme dependent; one can remove these contributions by adding finite local boundary

terms.

The dilatation Ward identity is

〈T i
i 〉 + Φ(0)〈O〉 = −2Leκ(0)a(6), (5.83)

whilst the diffeomorphism Ward identity is

∇i〈Tij〉 + ∂jΦ(0)〈O〉 = 0. (5.84)

The terms involving (h(6)ij , κ̃(6)) drop out of the Ward identities because of the trace and

divergence identities given in (5.35).

These formulae are as expected consistent with the reduction of the M5 brane formulae

given in [6]. This computation of the renormalized stress energy tensor for the M5-brane

case is reviewed in appendix B. In fact in [6] the renormalized stress energy tensor for the

AdS7 case was given only up to scheme dependent traceless, covariantly constant terms,

proportional to the coefficient H(6)ab of the logarithmic term in the asymptotic expansion.

In appendix B we determine these contributions to the stress energy tensor, with the

resulting stress energy tensor being (B.9):

〈Tab〉 =
N3

3π3
(6tab + 11H(6)ab). (5.85)

The streamlined method of derivation of the renormalized stress energy tensor given in

appendix B is also useful in the explicit derivation of the D4-brane formulae given in (5.82).

Dimensional reduction of the tab term in the stress energy tensor results in the (tij , ϕ) terms

in the D4-brane operator vevs, whilst reduction of theH(6)ab term gives the terms involving

(h(6)ij , κ̃(6)). The details of this dimensional reduction are discussed in appendix C.

6. Hamiltonian formulation

In the previous section we showed how correlation functions can be computed using the

basic holographic dictionary that relates the on-shell gravitational action to the generating

functional of correlators, and we renormalized the action with counterterms to obtain finite

expressions. This method of holographic renormalization is conceptually very simple but

does not exploit all the structure of the theory.

The underlying structure of the correlators is best exhibited in the radial Hamiltonian

formalism, which is a Hamiltonian formulation with the radius playing the role of time.
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The Hamilton-Jacobi theory, introduced in this context in [42], relates the variation of

the on-shell action w.r.t. boundary conditions, thus the holographic 1-point functions, to

radial canonical momenta. It follows that one can bypass the on-shell action and directly

compute renormalized correlators using radial canonical momenta π, as was developed for

asymptotically AdS spacetimes in [11, 12].

A fundamental property of asymptotically (locally) AdS spacetimes is that dilatations

are part of their asymptotic symmetries. This implies that all covariant quantities can

be decomposed into a sum of terms each of which has definite scaling. These coefficients

are in 1-1 correspondence with the asymptotic coefficients in (5.1) with the exact relation

being in general non-linear. The advantage of working with dilatation eigenvalues rather

than with asymptotic coefficients is that the former are manifestly covariant while the

latter in general are not: the asymptotic expansion (5.1) singles out one coordinate so it

is not covariant. Holographic 1-point functions can be expressed most compactly in terms

of eigenfunctions of the dilatation operator, and this explains the non-linearities found in

explicit computations of 1-point functions.

6.1 Hamiltonian method for non-conformal branes

We now develop a Hamiltonian version of the holographic renormalization of these back-

grounds following closely the steps of [11, 12]. We consider the action (3.4) with the

Gibbons-Hawking boundary term added to ensure that the action depends only on first

radial derivatives (as we will see shortly), so a radial Hamiltonian formalism can be set up:

S = −L
∫

AdSd+1

dd+1x
√
geγφ[R+ β(∂φ)2 + C] − 2L

∫

∂AdSd+1

ddx
√
heγφK. (6.1)

Note that we are again working in Euclidean signature. Next we introduce a radial Hamil-

tonian formulation. In the usual Hamiltonian formulation of gravity in the ADM formalism

one foliates spacetime by hypersurfaces of constant time. Here analogously we introduce a

family of hypersurfaces Σr of constant radius r near the boundary and denote by nµ their

unit normal. For asymptotically locally AdS manifolds there always exists a radial function

normal to the boundary which can be used to foliate the space in such radial slices, at least

in a neighborhood of the boundary.

In order to give a Hamiltonian description of the dynamics, one needs to express the

action (3.4) in terms of quantities on Σr. In particular, this means that the Ricci scalar

in the action (3.4) should be expressed in terms of expressions which only contain first

derivatives in the radial variable. The induced metric on the hypersurface Σr can be

expressed as hσµ = gσµ −nσnµ, with hρ
µ ≡ gρσhσµ. Now let us define the radial flow vector

field rµ by the relation rµ∂µr = 1, such that the components of rµ tangent and normal to

Σr define shift and lapse functions respectively:

rµ
‖ = hµ

ρr
ρ ≡ Nµ; rµ

⊥ = Nnµ. (6.2)

Thus the metric is decomposed as

ds2 = (N2 +NµN
µ)dr2 + 2Nµdx

µdr + hµνdx
µdxν , (6.3)
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analogously to the usual ADM decomposition.

A useful tool in our analysis is the extrinsic curvature Kµν of the hypersurface given

by the covariant derivative of the unit normal

Kµν = hσ(µ∇σnν). (6.4)

The geometric Gauss-Codazzi equations (in the contracted form of [11, 12]) can be used to

express the curvature of the embedding space in terms of extrinsic and intrinsic curvatures

on the hypersurface:5

K2 −KµνK
µν = R̂+ 2Gµνn

µnν , (6.5)

∇̂µK
µ
ν − ∂νK = Gρσh

ρ
νn

σ,

£nKµν +KKµν − 2Kρ
µKρν = R̂µν − hρ

µh
σ
νRρσ ,

where Gµν is the Einstein tensor in the embedding spacetime, K is the trace of the extrinsic

curvature, R̂µν is the intrinsic curvature and ∇̂ is the covariant derivative on the hyper-

surface. Note that these equations become completely equivalent to Einstein’s equations,

on gauge fixing the lapse and the shift.

Combining the first equation in (6.5) with the Ricci identity Rµνn
µnν = nν(∇σ∇ν −

∇ν∇σ)nσ the Ricci scalar can be expressed as

R = K2 −KµνK
µν + R̂− 2∇µ(nµ∇νn

ν) + 2∇ν(n
µ∇µn

ν), (6.6)

Inserting this expression into the action (3.4), the last two terms cancel the Gibbons-

Hawking boundary term in (3.4) after partial integration and the remaining term is

S = −L
∫

dd+1x
√
geγφ[R̂+K2 −KµνK

µν + β(∂φ)2 + C (6.7)

+2γ∂µφn
µ∇νn

ν − 2γ∂νφn
µ∇µn

ν ].

Note that the extrinsic curvature can be expressed as

Kµν =
1

2N
(∂rhµν − ∇̂µNν − ∇̂νNµ), (6.8)

and thus the action can be expressed entirely in terms of the fields (hµν , N
µ, N) and the

scalar field φ, and their derivatives. The canonical momenta conjugate to these fields are

given by

πµν ≡ δL

δḣµν

, πφ ≡ δL

δφ̇
, (6.9)

where ḟ ≡ ∂rf and the momenta conjugate to the lapse and shift functions vanish iden-

tically. The corresponding equations of motion in the canonical formalism become con-

straints, which are precisely those obtained from the first two equations in (6.5) and are

the Hamiltonian and momentum constraints respectively.

5The Lie derivative in our conventions is defined as £nKµν = nσKµν,σ − 2nσ
,(µKν)σ.
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The diffeomorphism gauge is most naturally fixed by choosing Gaussian normal coor-

dinates (Nµ = 0 and N = 1), such that

ds2 = dr2 + hij(r, x)dx
idxj , Kij =

1

2
ḣij (6.10)

nµ = δµ
r , ∇µn

µ = K, nµ∇µn
ν = 0,

where the dot denotes differentiation with respect to r. The action becomes

S = −L
∫

dd+1x
√
heγφ[R̂+K2 −KijK

ij + β(φ̇2 + (∂iφ)2) + C + 2γφ̇K]. (6.11)

and the canonical momenta are given by

πφ = 2B (βφ̇+ γK), B ≡ −Leγφ
√
h. (6.12)

πij = B (Khij −Kij + γφ̇hij),

The Gauss-Codazzi identities in this gauge become:

K2 −KijK
ij = R̂+ 2Grr, (6.13)

DiK
i
j −DjK = Gjr,

K̇i
j +KKi

j = R̂i
j −Ri

j ,

Now consider the regulated manifold Mr0 defined as the submanifold of M bounded by

the hypersurface Σr0. The values of the induced fields on Σr0 become boundary conditions

for the action, and therefore the momenta on the regulating surface can be obtained from

variations of the on-shell action with respect to the boundary values of the induced fields.

The Hamilton-Jacobi identities thus allow the momenta (6.12) on the regulating surface to

be expressed in terms of the on-shell action by

πij(r0, x) =
δSon−shell

δhij(r0, x)
, πφ(r0, x) =

δSon−shell

δφ(r0, x)
. (6.14)

Since the choice of the regulator r0 is arbitrary, the equations (6.17) and (6.14) can be used

not just to compute the on-shell action and momentum on the regulating surface Σr0 but

on any radial surface Σr.

Now to calculate the regulated on-shell action one uses the first of the Gauss-Codazzi

identities, together with the field equations (3.11):

Son−shell = −2L

∫

Mr0

dd+1x
√
heγφ[R̂+ β(∂iφ)2 +C]. (6.15)

However, since the field equations follow from the variation of the bulk part of the action,

the radial derivative of the on-shell action can be expressed as a purely as a boundary term,

Ṡon−shell = −2L

∫

Σr0

ddx
√
heγφ[R̂+ β(∂iφ)2 + C]. (6.16)
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From this expression follows that the regulated on-shell action can itself also be written as

a d-dimensional integral by introducing a covariant variable λ,

Son−shell = −2L

∫

Σr0

ddx
√
heγφ[K − λ], (6.17)

where λ satisfies the equation

λ̇+ λ(K + γφ̇) + E = 0, (6.18)

E =
(γ2 + d(γ2 − β))β

(γ2 − β)2
= −2(p− 1)(p − 4)(p − 7)

(p − 5)2
,

and the trace of the third equation in (6.13) is used, along with the field equations (3.11).

Note that since Σr0 is compact λ is defined only up to a total divergence.

The Hamilton-Jacobi identities then imply that:

πijδhij + πφδφ = −2Lδ[
√
heγφ(K − λ)], (6.19)

up to a total derivative. One can always use the total divergence ambiguity in λ to en-

sure that this expression holds without integrating it over Σr. First one chooses any λ

satisfying (6.18), and then one calculates the variation δ[
√
heγφ(K − λ)]. This variation

necessarily gives the left hand side of (6.19), up to total derivative terms, which can be

absorbed into the definition of λ. (Strictly speaking, this argument applies only to the

local terms in λ; the finite part of λ as r → ∞ is actually non-local in the sources, and

only the integrated identity holds for this part.)

6.2 Holographic renormalization

We next turn to the formulation of a Hamiltonian method of holographic renormalization.

In the earlier sections, we discussed holographic renormalization by solving asymptotically

the field equations, as a function of sources. Here we will instead use the equations of

motion to determine the asymptotic form of the momenta as functionals of induced fields.

Such a procedure is manifestly covariant at all stages, with the Ward identities being

manifest and the one point functions of dual operators being naturally expressed in terms

of the momenta.

An important tool in the Hamiltonian method is the dilatation operator, whose eigen-

functions are covariant expressions on the hypersurface Σr, and which asymptotically be-

haves like the radial derivative. The radial derivative acting on the on-shell action and

on the momenta can be represented as a functional derivative, since by means of the field

equations the on-shell action and the momenta are given as functionals of hij and φ:

∂r =

∫

ddx

(

2Kij [h, φ]
δ

δhij
+ φ̇[h, φ]

δ

δφ

)

(6.20)

where we used (6.10). Now, recall that the dilatation operator for a d-dimensional theory

on a curved background containing sources for operators of dimension ∆ is given by

δD ≡
∫

ddx

(

2hij
δ

δhij
+ (∆ − d)Φ

δ

δΦ

)

(6.21)
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In our case, the field Φ = exp 2(p−5)
(7−p) φ couples to O which has dimension 4. Using the chain

rule we obtain

δD ≡
∫

ddx

(

2hij
δ

δhij
− 2α

δ

δφ

)

= ∂r + O(e−2r), (6.22)

so indeed the radial derivative can be asymptotically identified with the dilatation operator

since asymptotically φ̇→ −2α and ḣij → 2hij .

The next key observation is that the momenta and on-shell action can be expanded

asymptotically in terms of eigenfunctions of the dilatation operator δD. The structure one

expects in these expansions of Ki
j , λ and φ̇ in terms of weights of the dilatation operator is

similar to the radial expansions (5.2), except that every term in the expansion also contains

terms subleading in e−2r:

Ki
j [h, φ] = K(0)

i
j
+K(2)

i
j
+ · · · +K(d−2αγ)

i
j
+ K̃(d−2αγ)

i

j
log e−2r, (6.23)

λ[h, φ] = λ(0) + λ(2) + · · · + λ(d−2αγ) + λ̃(d−2αγ) log e−2r,

φ̇[h, φ] = pφ
(0) + pφ

(2) + · · · + pφ
(d−2αγ) + p̃φ

(d−2αγ) log e−2r.

(We will see that the logarithmic terms appear only if (d− 2αγ) is an even integer, i.e. for

p = 3, 4.) The transformation properties of these terms under the dilatation operator are:

δDK(n)
i
j = −nK(n)

i
j ,

δDK̃(d−2αγ)
i
j = −(d− 2αγ)K̃(d−2αγ)

i
j , (6.24)

δDK(d−2αγ)
i
j = −(d− 2αγ)K(d−2αγ)

i
j − 2K̃(d−2αγ)

i
j ,

and similarly for λk and pφ
k . Thus terms with weight n < (d − 2αγ) transform homoge-

neously, whilst terms with weight n = (d − 2αγ) transform inhomogeneously, indicating

that these terms depend non-locally on the induced fields. As we will see below, the terms

with weight n < d−2αγ are algebraically (locally) determined in terms of the asymptotics,

while the weight (d− 2αγ) terms are undetermined up to some constraints. The latter will

be identified with the renormalized one point functions and the on-shell action, which are

non-local functionals of the sources. Given a solution from which one wishes to extract

the 1-point function dual to a given field, one simply subtracts the lower weight terms in

the dilatation expansion of the corresponding momentum. We will show below how these

lower weight terms can be determined recursively in terms of the asymptotic data.

Although it is as mentioned above not necessary to compute the renormalised action

to obtain renormalised 1-point functions, the Hamiltonian method is more efficient at

determining the counterterms. The divergences in the on-shell action can be expressed in

terms of the terms in the expansions which are divergent as r0 → ∞. These divergences

can be removed by a counterterm action which consists of these divergent terms in the

expansions, namely:

Ict = 2L

∫

Σr0

√
heγφ

(

∑

0≤n<d−2αγ

(K(n) − λ(n)) + (K̃(n) − λ̃(n)) log e−2r0

)

. (6.25)
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This counterterm action also leads through the Hamilton-Jacobi relations to the covariant

counterterms of the momenta. The renormalised action is then given by the terms of

appropriate weight in the on-shell action (6.17):

Iren = −2L

∫

Σr0

ddx
√
heγφ[K(d−2αγ) − λ(d−2αγ)]. (6.26)

The gravity/gauge theory prescription identifies this with the generating functional in the

dual field theory, and so, in particular, the first derivatives of this actions with respect

to the sources correspond to the one point functions of the dual operators. Since the

Hamilton-Jacobi relations identify these first derivatives with the non-local terms in the

expansions of the momenta one obtains immediately the relations:

〈Tij〉 = π(d−2αγ)ij ; 〈Oφ〉 = (πφ)(d−2αγ). (6.27)

From (6.12) one sees that the one-point functions are given by:

〈Oφ〉 = −2Leγφ(βpφ
(d−2αγ) + γK(d−2αγ)), (6.28)

〈Tij〉 = 2Leγφ((K(d−2αγ) + γpφ
(d−2αγ))hij −K(d−2αγ)ij).

Thus to obtain both the counterterms and the one-point functions one needs to solve for

the terms in the dilatation expansions.

6.3 Ward identities

The diffeomorphism Ward identity can be derived from the momentum constraint, the

second Gauss-Codazzi equation in (6.13):

∇̂iK
i
j − ∇̂jK = Gjr = (γ2 − β)∂jφφ̇+ γ∂j φ̇− γKi

j∂iφ. (6.29)

Using (6.12) this can easily be expressed in terms of momenta:

∇̂i

(

πij

√
h

)

=
1

2
√
h
∂jφπφ. (6.30)

Expressing this identity at weight (d−2αγ) in terms of one-point functions yields the Ward

identity

∇̂i〈T ij〉 − γ−1〈Oφ〉∂jκ(0) = 0. (6.31)

which becomes of the standard QFT form (4.7) upon expressing this identity in terms of

〈O〉 and Φ(0). To determine the dilatation Ward identity one computes the infinitesimal

Weyl transformation of the renormalised action (6.26)

δσIren = 4L

∫

Σr

ddx
√
h(Neφ)γ [K̃(d−2αγ) − λ̃(d−2αγ)]δσ, (6.32)

where one uses the non-diagonal behaviour of K(d−2αγ) and λ(d−2αγ) under the dilatation

operator exhibited in (6.24). However, this infinitesimal Weyl transformation is also given

by the renormalised version of the Hamilton-Jacobi relations (6.14) given by6

δσIren = −
∫

Σr

ddx
√
h[2π(d−2αγ)

i
i − 2απφ(d−2αγ)]δσ. (6.33)

6We define e.g. πφ(d−2αγ) to be the weight (d − 2αγ) part of πφ/
√

h.
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Since these identities hold for arbitrary δσ we can infer the conformal Ward identity

〈T i
i 〉 + 2α〈Oφ〉 = A, (6.34)

where the anomaly is given by

A = −4L[K̃(d−2αγ) − λ̃(d−2αγ)]. (6.35)

The anomaly for the D4-brane will be computed below. Again this becomes the standard

Ward identity (4.8) (with an anomaly) upon replacing 〈Oφ〉 by χΦ(0)〈O〉 (see footnote 4).

6.4 Evaluation of terms in the dilatation expansion

Let us now discuss how to evaluate the local terms in the dilatation expansion. In the

previous section we have derived a number of identities which can be solved recursively

to determine terms in the expansions. In particular, applying the Hamilton-Jacobi iden-

tity (6.19) to dilatations gives

(1 + δD)K − (d− 2αγ + δD)λ− (dγ − 2αβ)φ̇ = 0. (6.36)

The Hamilton-Jacobi relations (6.14) and (6.12) also imply expressions for the extrinsic

curvature and scalar field momenta:

(Khij −Kij + γφ̇hij) =
2

eγφ
√
h

δ

δhij

∫

Σr0

ddx
√
heγφ(K − λ); (6.37)

(βφ̇+ γK) =
1

eγφ
√
h

δ

δφ

∫

Σr0

ddx
√
heγφ(K − λ).

Next one has the Einstein equations, rewritten as the Gauss-Codazzi equations (6.13).

Note that the Hamiltonian constraint in (6.13) can be written as

K2 −KijK
ij = R̂− βφ̇2 + (β − 2γ2)(∂iφ)2 − 2γ∇̂2φ− 2γKφ̇+ C, (6.38)

where the field equations (3.11) are used on the right hand side, and the double radial

derivative terms φ̈ are eliminated using the scalar equation of motion. One can also use

the scalar equation of motion (the second equation in (3.11)), which in Gaussian normal

coordinates reads

φ̈+ ∇̂2φ+Kφ̇+ γφ̇2 + γ(∂iφ)2 − γ(d(γ2 − β) + γ2)

(γ2 − β)2
= 0. (6.39)

as well as the differential equation for λ (6.18). Not all of these identities are necessary in

order to recursively determine the lower terms in the dilatation expansion.

In practice it is convenient to first use the Hamilton-Jacobi identity (6.36) to express

the local coefficients of λ in terms of those in K and φ̇:

λ(2n) =
(1 − 2n)K(2n) − (dγ − 2αβ)pφ

(2n)

d− 2αγ − 2n
. (6.40)
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Thus this identity ensures that all counterterms are expressed in terms of the momenta.

Next one needs to solve for the momenta, using the Hamilton-Jacobi relations, Gauss-

Codazzi relations and the scalar equation of motion. Consider first the Hamilton con-

straint (6.38); this equation can be expanded into terms of given dilatation weight, and

solving at each weight yields a recursion relation for terms in the expansion of Kij and φ̇.

At dilatation weight zero this constraint yields merely a check of the background solution.

Noting that K(0) = K(0)ijK
ij
(0) = d the zero weight constraint is

d(d− 1) = −β(pφ
(0))

2 − 2γdpφ
(0) + C, (6.41)

which is satisfied given that pφ
(0) = −2α and the definition of α in terms of (β, d,C).

At higher dilatation weight one obtains a recursion relation for a linear combination

for K(2n) and pφ
(2n) at a given weight 2n:

K(2) + γpφ
(2) =

1

2(d − 2αγ − 1)
[R̂ + (β − 2γ2)(∂iφ)2 − 2γ∇̂2φ], (6.42)

K(2n) + γpφ
(2n) =

1

2(d − 2αγ − 1)

[ n−1
∑

m=1

(K(2m)
i
jK(2n−2m)

j
i −K(2m)K(2n−2m))

−
n−1
∑

m=1

(βpφ
(2m)p

φ
(2n−2m) + 2γK(2m)p

φ
(2n−2m))

]

.

Note that if (d− 2αγ) is not an even integer one immediately finds the relation

K(d−2αγ) + γpφ
(d−2αγ) = 0, (6.43)

since no terms on the right hand side can contribute at this weight. This relation precisely

corresponds to (5.22) in the old formalism, in the case where the undetermined term appears

at a non-integral power of ρ.

Consider next the scalar equation of motion; to express this in terms of terms of given

dilatation weight, it is necessary to expand φ̈ in terms of eigenfunctions of the dilatation

operator. (Note that eliminating φ̈ using the other field equations does not give an identity

which is independent of (6.38).) The additional radial derivative in φ̈ can be expressed

in terms of the dilatation operator by keeping higher terms in the expansion of the radial

derivative:

∂r =

∫

ddx

(

2Kij
δ

δhij
+ φ̇

δ

δφ

)

(6.44)

= δD +
∑

n≥1

∫

ddx

(

2K(2n)ij
δ

δhij
+ pφ

(2n)
δ

δφ

)

≡ δD +
∑

n≥1

δ(2n).

Given the transformation properties (6.24) of the expansion coefficients of the momenta, the

subleading terms in the expansion of ∂r must satisfy the commutation relation [δD, δ(2n)] =

−2nδ(2n).
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Solving the scalar field equation at weight zero, (6.39) is automatically satisfied given

the leading asymptotic behavior. At higher weights 2n with n > 1 a recursion relation for

a distinct linear combination of K(2n) and pφ
(2n) is obtained:

(d− 2 − 4αγ)pφ
(2) − 2αK(2) = −∇̂2φ− γ(∂iφ)2, (6.45)

(d− 2n− 4αγ)pφ
(2n) − 2αK(2n) = −

n−1
∑

m=1

(δ(2m)p
φ
(2n−2m) +K(2m)p

φ
(2n−2m)).

In the case that (d−2αγ) is not an even integer, the relevant term in the recursion relation

becomes

−2α(K(d−2αγ) + γpφ
(d−2αγ)) = 0, (6.46)

since no terms on the right hand side can contribute at this weight, and thus reproduces

the trace constraint (6.43).

The Hamiltonian constraint (6.42) together with the scalar equation (6.45) thus consti-

tutes a linear system of equations which allows one to express K(2n) and pφ
(2n) in terms of

lower order coefficients. One can then determine λ(2n) from (6.40), and use the Hamilton-

Jacobi relations (6.37) to determine the extrinsic curvature K(2n)
i
j. This is all information

needed to proceed in the recursion.

It is useful to recall here the equation (6.18) for the variable λ, which determines the

on-shell action. Here again the radial derivative can be expressed in terms of the dilatation

operator, giving:
(

δD +

d/2−αγ
∑

n=1

δ(2n)

)

λ+ λ(K + γφ̇) + E = 0. (6.47)

Note that in the case of E = 0, i.e. for F1,D1 and D4 branes λ = 0 solves the differential

equation, and thus the coefficients λ(2n) consist only of total derivative terms which are

determined by (6.40).

6.4.1 Category 1: Undetermined terms at non-integral order

Let us consider first the case where the undetermined terms occur at non-integral order,

namely p < 3, and obtain the counterterms and one point functions.

The Hamiltonian constraint (6.42) together with the scalar equation (6.45) can be

solved at first order to give:

K(2) =
1

2(d− 2αγ − 1)(d − 2αγ − 2)
(6.48)

×
(

(d− 2 − 4αγ)(R̂ + β(∂φ)2) + 2(1 + 2αγ)e−γφ∇2(eγφ)
)

;

pφ
(2) =

1

γ(d− 2αγ − 1)(d − 2αγ − 2)

×
(

γα(R̂ + β(∂φ)2) − (d− 1)e−γφ∇2(eγφ)
)

;
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Next note that the counterterms λ(2n) follow from (6.40), and are given by

λ(0) = −2αβ

γ
; (6.49)

λ(2) = −K(2) + (dγ − 2αβ)pφ
(2)

(d− 2αγ − 2)
.

For the cases p < 3 one only needs to solve up to this order to obtain all counterterms,

with the counterterm action being:

Ict = L

∫

Σr0

√
heγφ

(

2d− 4αβ

γ
+

γ2 − β

(d− 1)γ2 + β(2 − d)
(R̂+ β(∂φ)2)

)

(6.50)

−L
∫

Σr0

√
h

d

(d− 2αγ − 2)
∇2(eγφ).

This coincides with the counterterm action found earlier in (5.76), up to the (irrelevant)

total derivative term in the second line.

Next consider the one point functions. To apply the general formula (6.28), one needs

to relate the momentum coefficients with terms in the asymptotic expansion of the metric

and the scalar field. In the case that (d−2αγ) is not an even integer, this identification turns

out to be very simple. Recall that in the original method of holographic renormalization

one expanded the induced metric asymptotically in the radial coordinate ρ = e−2r as

hij =
1

ρ

(

g(0)ij + ρg(2)ij + · · ·+ ρ
1
2
(d−2αγ)g(d−2αγ)ij + ρ

1
2
(d−2αγ) ln ρh(d−2αγ)ij + · · ·

)

, (6.51)

where the logarithmic term is included when (d− 2αγ) is an even integer. Differentiating

with respect to r gives

Kij =
1

2
ḣij

=
1

ρ
g(0)ij − ρg(4)ij + · · · + ρ

1
2
(d−2αγ−2)

((

1 − 1

2
(d− 2αγ)

)

g(d−2αγ)ij − h(d−2αγ)ij

)

+ρ
1
2
(d−2αγ−2) ln ρ

(

1 − 1

2
(d− 2αγ)

)

h(d−2αγ)ij + · · · (6.52)

However, each term in the covariant expansion of the extrinsic curvature is a functional of

hij and can be expanded as:

K(0)ij [h] = hij =
1

ρ

(

g(0)ij + ρg(2)ij + · · · + ρ
1
2
(d−2αγ)g(d−2αγ)ij

+ρ
1
2
(d−2αγ) ln ρh(d−2αγ)ij + · · ·

)

;

K(2)ij [h] = K(2)ij [g(0)] + ρ

∫

ddxg(2)kl

δK(2)ij

δg(0)kl
+ · · · ; (6.53)

K(d−2αγ)ij [h] = ρ
1
2
(d−2αγ−2)K(d−2αγ)ij [g(0)] + · · · ;

K̃(d−2αγ)ij [h] = ρ
1
2
(d−2αγ−2)K̃(d−2αγ)ij [g(0)] + · · · .
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Inserting these expressions into the expansion and comparing with (6.52) implies:

K(0)ij [g(0)] = g(0)ij ; (6.54)

K(2)ij [g(0)] = −g(2)ij ;

K(d−2αγ)ij [g(0)] = −1

2
(d− 2αγ)g(d−2αγ)ij − h(d−2αγ)ij + · · · ;

K̃(d−2αγ)ij [g(0)] = −1

2
(d− 2αγ)h(d−2αγ)ij .

Here the ellipses denote terms involving functional derivatives with respect to g(0)ij of lower

order coefficients g(2n)ij [g(0)].

The formulae are thus simplified in the case where (d − 2αγ) is not an even integer,

since no lower weight terms can contribute and we obtain K(d−2αγ)ij = −(d
2−αγ)g(d−2αγ)ij .

Similarly treating the scalar field expansion, one finds that

γpφ
(d−2αγ) = −(d− 2αγ)κ(d−2αγ), (6.55)

which yields for the one point functions:

〈Oφ〉 = (d− 2αγ)

(

γ − β

γ

)

Leκ(0)Trg(d−2αγ), (6.56)

〈Tij〉 = (d− 2αγ)Leκ(0)g(d−2αγ)ij ,

where we used the constraint (6.43) in the last equation. Note that the mixing of K and

φ̇ in the momenta conspires to ensure that the expectation value of the energy-momentum

tensor is proportional to just g(d−2αγ)ij , without involving Trg(d−2αγ). These formulas

exactly agree with the ones in (5.77) we derived earlier (upon use of (5.21) and (3.10)).

The D4-branes are the only case under consideration where (d−2αγ) is an even integer;

here the lower weight terms do contribute and the expressions for the vevs are considerably

more complicated. We thus turn next to the evaluation of the momentum coefficients in

this case.

6.4.2 Category 2: The D4-brane

In this section we will consider the case of the D4-branes, where (d−2αγ) is an even integer,

and derive the counterterms; the anomaly term A in the dilatation Ward identity (6.34)

and the one point functions. Note that the anomaly appears only if (d − 2αγ) is an even

integer, since only then do we need nonzero coefficients K̃(d−2αγ) and p̃φ
(d−2αγ) of the

logarithmic terms in (6.23) to fulfill the field equations. For the branes of interest, only

the cases of p = 3 and p = 4 have anomalies, and the coefficients can be calculated from

the counterterms. The case p = 3 was discussed already in [4, 6]and will not be discussed

further here.

The counterterms and the anomaly are found by recursively computing the momen-

tum coefficients. The Hamiltonian constraint (6.42) along with the scalar equation (6.45)

provides a system of equations to determine K(2n) and pφ
(2n), whilst the uncontracted

Hamilton-Jacobi identity (6.37) can be used to obtain K(2n)
i
j . Recall that in this case
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E = 0, and thus λ is zero, up to total derivatives. This means in particular that the

dilatation equation (6.40) can always be written as

(1 − 2n)K(2n) − dγφ̇(2n) = (d− 2αγ − 2n)λ(2n) ≡ Φ̂−1∇̂lY
l
(2n), (6.57)

where Φ̂ ≡ eγφ. As λ is zero, up to these total derivatives, the only counterterms needed are

the K(2n), along with the logarithmic counterterm K̃(6). Explicit expressions for the mo-

menta found by solving the recursion relations are given in appendix D, with the terms K(2)

and K(4) agreeing with the (non-logarithmic) counterterms found previously, see (5.80).

At weight (d − 2αγ) = 6 the dilatation equation (6.40) breaks down and only a lin-

ear combination of K(6) and pφ
(6) can thus be determined. This however is sufficient to

determine the anomaly

〈T i
i 〉 −

3

2
〈Oφ〉 = A, (6.58)

which is given by

A = −4LK̃(6) = 2Ld(K(6) + γpφ
(6)), (6.59)

where the right hand side is the combination ofK(6) and pφ
(6) which is determined by (6.42)

in terms of lower counterterms. The anomaly in terms of the momentum coefficients is

therefore:

A = 10L(K(6) + γpφ
(6)) (6.60)

= 2L(K(2)
i
jK(4)

j
i −K(2)K(4) −K(2)γp

φ
(4) −K(4)γp

φ
(2)).

Explicit expressions for each of these terms are given in appendix D; the total anomaly

can then be written as

A = − N3

48π2
gs(α

′)1/2

[

−RljkiRlkRij − 2Φ̂−2∇2Φ̂∇i∂jΦ̂Rij (6.61)

+
1

2
R(RijRij + Φ̂−2(∇2Φ̂)2) − 3

50
R3 +

1

5
Rij∇i∂jR +

1

20
R(∇2 + Φ̂−1∂iΦ̂∂i)R

−1

2
Rij[(∇2 + Φ̂−1∂lΦ̂∇l)Rij − 2Φ̂−2∂lΦ̂∂

(iΦ̂Rj)l − 2Φ̂−3∂iΦ̂∂jΦ̂∇2Φ̂]

+
1

2
Φ̂−1∇2Φ̂[−(∇2 + Φ̂−1∂iΦ̂∂i)(Φ̂

−1∇2Φ̂) + 2Φ̂−2∂iΦ̂∂jΦ̂Rij + 2Φ̂−3∂iΦ̂∂
iΦ̂∇2Φ̂]

]

,

where ∇ is the covariant derivative in the five-dimensional metric and

R ≡ R− 2Φ̂−1∇2Φ̂, (6.62)

Rij ≡ Rij − Φ̂−1∇i∂jΦ̂.

Here the anomaly has been expressed in such a way to demonstrate that it agrees with the

dimensional reduction of the anomaly of the M5-brane theory found in [4, 6]. The latter

is given in terms of the six-dimensional curvature Rabcd(G) of the six-dimensional metric

Gab by

〈T a
a 〉 =

N3

96π3

(

RabRcdRabcd −
1

2
RRabRab +

3

50
R3 (6.63)

+
1

5
RabDaDbR− 1

2
Rab

�Rab +
1

20
R�R

)

.
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In particular, the anomaly vanishes for a Ricci flat manifold (more generally it vanishes for

conformally Einstein manifolds). Now recall that on diagonal reduction the six-dimensional

Ricci tensor R(G)ab can be written as:

R(G)ij = Rij − Φ̂−1∇i∂jΦ̂; R(G)yy = −Φ̂−1∇2Φ̂. (6.64)

Clearly,

Rij = ∇i∂jΦ̂ = 0, (6.65)

in the reduced theory implies that the six dimensional manifold is Ricci flat. Comparing

with (6.61) one sees that indeed the anomaly vanishes under these conditions.

The anomaly of the six-dimensional theory can be expressed in terms of conformal

invariants, such that it is of the form

A = aN3(E(6) + I(6) +DaJ
a
(5)), (6.66)

where a is an appropriate constant, E(6) is proportional to the six-dimensional Euler density

(type A anomaly), I(6) is a conformal invariant (type B anomaly) and the DaJ
a
(5) terms

are scheme dependent, as they can always be canceled by adding finite counterterms.

The D4 anomaly can necessarily be expressed in terms of invariants of the general-

ized conformal structure: dimensional reduction of each of the six-dimensional conformal

invariants gives a generalized conformal invariant. Note however that the reduction of the

six-dimensional Euler density will give an invariant which is not topological with respect to

the five-dimensional background. It is also not clear that the basis of generalized conformal

invariants obtained by dimensional reduction would be irreducible; it would be interesting

to explore this issue further.

The general one point functions in this case are given by evaluating the expressions:

〈Oφ〉 = −2Leγφ(γK(d−2αγ)), (6.67)

〈Tij〉 = 2Leγφ
(

(K(d−2αγ) + γpφ
(d−2αγ))hij −K(d−2αγ)ij

)

.

The resulting expressions are as found before, see (5.82):

〈Oφ〉 = −Leκ(0)

(

8ϕ+
44

3
κ̃(6)

)

; 〈Tij〉 = Leκ(0)(6tij + 11h(6)ij), (6.68)

where (ϕ, tij) are given in (5.41).

7. Two-point functions

In this section we will discuss the computation of 2-point functions for backgrounds with the

asymptotics of the non-conformal branes. Transforming to the dual frame, these become

Asymptotically locally AdS backgrounds with a linear dilaton and this implies that their

analysis is essentially the same as the analysis of the more familiar holographic RG flows

with conformal asymptotics [8, 9, 12]. In the next subsection we briefly review the basic

principles of the computation of 2-point functions, mostly following the discussion in [8].

Then we compute the 2-point functions for the D-branes in subsection 7.2 and finally we

will discuss the computation for the general case in subsection 7.3.
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7.1 Generalities

Let us start by recalling the basic formula relating bulk and boundary quantities:

〈exp(−SQFT[g(0),Φ(0)])〉 = exp(−SSG[g(0),Φ(0)]). (7.1)

The left hand side denotes the functional integration involving the field theory action SQFT

coupled to background metric g(0) and sources Φ(0) that couple to composite operators.

For the case of Dp-branes the action SQFT is given in (4.1). On the right hand side

SSG[g(0),Φ(0)] is the bulk supergravity action evaluated on classical solutions with boundary

date g(0),Φ(0). For the cases at hand this action is given in (3.4). As discussed extensively

in previous sections, this relation needs to be renormalized and we have determined the

renormalized action Sren for all cases. By definition the variation of the renormalized action

is given by

δSren[g(0),Φ(0)] =

∫

dd+1x
√

g(0)

(

1

2
〈Tij〉δgij

(0) + 〈O〉δΦ(0)

)

. (7.2)

Higher point functions are determined by further differentiation of the 1-point functions,

e.g. for the case of Dp-branes

〈O(x)O(y)〉 = − 1
√
g(0)

δ〈O(x)〉
δΦ(0)(y)

∣

∣

∣

∣

∣

g(0)ij=δij ,Φ(0)=g−2
d

. (7.3)

As we have shown in earlier sections, the 1-point functions in the presence of sources are

expressed in terms of the asymptotic coefficients in the near-boundary expansion of the bulk

solution. In particular, they depend on the coefficients that the asymptotic analysis does

not determine. To obtain those we need exact regular solutions with prescribed boundary

conditions. On general grounds, regularity in the interior should fix the relation between the

asymptotically undetermined coefficients and the boundary data. Having obtained such

relations one can then proceed to compute the holographic n-point functions. To date,

this program has only been possible to carry out perturbatively around given solutions.

In particular, linearized solutions determine 2-point functions, second order perturbations

determine 3-point functions etc. Here we will discuss the 2-point functions involving the

stress energy tensor Tij and the scalar operator O.

Let us decompose the metric perturbation as,

δg(0)ij(x) = δhT
(0)ij + ∇(iδh

L
(0)j) + g(0)ij

1

d− 1
δf(0) −∇i∇jδH(0) (7.4)

where

∇ihT
(0)ij = 0, hT i

(0)i = 0, ∇ihL
(0)i = 0. (7.5)

All covariant derivatives are that of g(0). Then the different components source different

irreducible components of the stress energy tensor,

δSren[g(0),Φ(0)] =

∫

dd+1x
√

g(0)

(

〈O〉δΦ(0) −
1

2
〈Tij〉δhT ij

(0) − 1

2(d− 1)
〈T i

i 〉δf(0)

+∇i〈Tij〉δhL j
(0) + ∇i∇j〈Tij〉δH(0)

)

(7.6)
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Now, recall that in the cases we discuss here we have already established that the holo-

graphic Ward identities,

∇j〈Tij〉J + 〈O〉J∂iΦ(0) = 0, (7.7)

〈T i
i 〉J + (d− 4)Φ(0)〈O〉J = A, (7.8)

where there is an anomaly only for p = 4. These and the fact that Φ(0) in the background

solution is a constant imply that the second line in (7.6) does not contribute to 2-point

functions. Note also that the source for the trace of stress energy tensor is −f(0)/(2(d−1)).

We will be interested in cases with g(0)ij = δij (or somewhat more generally the cases

with g(0) being conformally flat). The two-point functions of Tij and O have the following

standard representation in momentum space,

〈Tij(q)Tkl(−q)〉 = ΠTT
ijklA(q2) + πijπklB(q2)

〈Tij(q)O(−q)〉 = πijC(q2)

〈O(q)O(−q)〉 = D(q2) (7.9)

where A,B,C,D are functions of q2 and

πij = δij −
qiqj
q2

(7.10)

ΠTT
ijkl = −

δhTT
(0)ij

δhTT kl
(0)

=
1

2
(πikπjl + πilπjk) −

1

d− 1
πijπkl

are transverse and transverse traceless projectors, respectively. The trace Ward identity

implies

〈Tij(q)T
k
k (−q)〉 = − 1

g2
d

(d− 4)〈Tij(q)O(−q)〉

〈T i
i (q)O(−q)〉 = − 1

g2
d

(d− 4)〈O(q)O(−q)〉 (7.11)

which then leads to the relations,

B(q2) = − 1

g2
d

(d− 4)

(d− 1)
C(q2) =

(

1

g2
d

(d− 4)

(d− 1)

)2

D(q2) (7.12)

Furthermore, the coefficient D(q2) is also constrained by the generalized conformal invari-

ance as discussed in section 4.

7.2 Holographic 2-point functions for the brane backgrounds

We next discuss the computation of the 2-point functions in the backgrounds of the non-

conformal branes. Earlier discussions of the 2-point functions in the D0-brane background

can be found in [27] and for Dp-brane backgrounds they were discussed in [18, 19, 28].
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We need to solve for small fluctuations around the background solution given in (3.7).

We thus consider a solution of the form

ds2 =
dρ2

4ρ2
+
gij(x, ρ)dx

idxj

ρ
, (7.13)

φ(x, ρ) = α log ρ+ ϕ(x, ρ), ϕ(x, ρ) ≡ κ(x, ρ)

γ
,

with

gij(x, ρ) = δij + γij(x, ρ). (7.14)

and ϕ, γij considered infinitesimal. The background metric is translationally invariant, so

it is convenient to Fourier transform. The fluctuation γij(q, ρ) can be decomposed into

irreducible pieces as

γij(q, ρ) = eij(q, ρ) +
d

d− 1

(

1

d
δij −

qiqj
q2

)

f(q, ρ) +
qiqj
q2

S(q, ρ), (7.15)

Let us also express the transverse traceless part as eij(q, ρ) ≡ hT
(0)ij(q)h(q, ρ), where h(q, ρ)

is normalized to go to 1 as ρ → 0. The field theory sources hT
(0)ij(q), f(0)(q), S(0)(q) are

the leading ρ independent parts of eij(q, ρ), f(q, ρ), S(q, r). Relative to the discussion in

the previous subsection, we have gauged away the longitudinal vector perturbation hL
i and

traded H for S = d
d−1f + p2H.

The linearized equations are now obtained by inserting (7.14)–(7.15) into (5.6)–(5.9)

and treating κ, h, f, S as infinitesimal variables. This leads to the following equations:

1

2
S′′ + κ′′ = 0; (7.16)

1

2
f ′ + κ′ = 0; (7.17)

2ρh′′ − (d− 2 − 2αγ)h′ − 1

2
q2h = 0; (7.18)

2ρS′′ + (2αγ + 2 − 2d)S′ − 2dκ′ − q2(κ+ f) = 0; (7.19)

4ρκ′′ + (8αγ + 4 − 2d)κ′ + 2αγS′ − q2κ = 0, (7.20)

where the equations are listed in the same order as in (5.6)–(5.9) with (7.18) and (7.19)

being the transverse traceless and trace part of (5.8). Equation (7.18) is already diagonal.

The remaining equations can be diagonalized by elementary manipulations leading to the

following expressions,

κ(q, ρ) = 2αγv0(q) + v1(q)χ(q, ρ) (7.21)

f(q, ρ) = −2(d− 1)v0(q) − 2v1(q)χ(q, ρ),

S(q, ρ) = v2(q) + ρq2v0(q) − 2v1(q)χ(q, ρ)

where v0, v1, v2 are integration constants, which can be expressed in terms of the sources as

v0 =
2γφ(0) + f(0)

2(1 − 2σ)
, v1 =

(d− 1)γφ(0) + αγf(0)

2σ − 1
, v2 = S(0) + 2v1, (7.22)
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where σ = d/2−αγ = (p−7)/(p−5) and φ(0) = κ(0)/γ with κ(0) the ρ independent part of

κ(q, ρ). χ(q, r) is normalized to go to 1 as ρ→ 0 and satisfies the same differential equation

as the transverse traceless mode, namely

2ρχ′′ − 2(σ − 1)χ′ − 1

2
q2χ = 0 (7.23)

The solution of this equation that is regular in the interior is given in terms of the modified

Bessel function of the second kind,

χσ(q, ρ) = c(σ)xσKσ(x), x =
√

q2ρ, σ =
p− 7

p− 5
, (7.24)

where the normalization coefficient c(σ) is chosen such that χ(q, ρ) approaches 1 as ρ→ 0.

In our case, σ = {7/5, 3/2, 5/3, 3} for p = {0, 1, 2, 4}.

7.2.1 Non-integral cases

The asymptotic expansion for non-integer values of σ is

χσ(q, ρ) = 1 +
1

4(1 − σ)
q2ρ+ · · · + χ̃(2σ)(q)ρ

σ + · · · (ν non−integer) (7.25)

where

χ̃(2σ)(q) = − Γ(1 − σ)

22σΓ(1 + σ)
(q2)σ. (7.26)

One can verify that the leading order terms in the exact linearized solution indeed agree

with the linearization of the asymptotic coefficients derived earlier and furthermore one

can obtain the coefficient that the asymptotic analysis left undetermined. Combining the

previous formulas we obtain,

κ(2σ) = v1(q)χ̃(2σ)(q
2) (7.27)

g(2σ)ij =

(

hT
(0)ij(q) −

2

(d− 1)
v1(q)πij

)

χ̃(2σ)(q
2)

which indeed satisfy the linearization of (5.28)–(5.29). Thus the 1-point functions (5.77)

to linear order in the sources are then given by

〈Oφ〉 =
2σLγ(d− 1)

α(2σ − 1)

(

φ(0) − 2α

(

− f(0)

2(d− 1)

))

χ̃(2σ)(q
2), (7.28)

〈Tij〉 = 2σL

(

hT
(0)ij −

2γ

(2σ − 1)

(

φ(0) − 2α

(

−
f(0)

2(d− 1)

))

πij

)

χ̃(2σ)(q
2). (7.29)

It follows that the 2-point functions are given by

〈Tij(q)Tkl(−q)〉 = ΠTT
ijkl

(

4σLχ̃(2σ)(q
2)
)

+ πijπkl

(

− 2α

(d− 1)

)2

〈Oφ(q)Oφ(−q)〉

〈Tij(q)Oφ(−q)〉 = πij

(

− 2α

(d− 1)

)

〈Oφ(q)Oφ(−q)〉 (7.30)

〈Oφ(q)Oφ(−q)〉 = −2σLγ(d− 1)

α(2σ − 1)
χ̃(2σ)(q

2)
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These relations are of the form (7.9) with the coefficients B,C related to the D coefficient

as dictated by the trace Ward identity (with the relation becoming (7.12) once we pass

from Oφ to O). Thus we only need discuss the transverse traceless part of the 2-point

function of Tij and the scalar 2-point function.

We now Fourier transform to position space using

∫

ddqe−iqx(q2)σ = πd/22d+2σ Γ(d/2 − σ)

Γ(−σ)

1

|x|d+2σ
, (7.31)

which is valid when σ 6= −(d/2 + k), where k is an integer. Let us first discuss the case of

Dp-branes. The scalar two function becomes

〈Oφ(x)Oφ(0)〉 = CφN
(7−p)/(5−p)(g2

d)(p−3)/(5−p)|x|
p2

−19−2p

5−p , (7.32)

= CφN
2 (g2

eff (x))
(p−3)
(5−p)

|x|2d

where Cφ is a positive numerical constant (obtained by collecting all numerical constants

in previous formulas). Note that the characteristic scale in this case is x and therefore the

effective coupling constant is g2
eff(x) = g2

dN |x|3−p. The gd and x dependence is consistent

with the constraints of generalized conformal invariance discussed in section 4. Recall also

that the operator Oφ at weak coupling has dimension d (and O has dimension 4). So

going from weak to strong coupling we find that the dimension is protected but the 2-point

function itself gets corrections. The overall factor of N2 reflects the fact that this is a tree

level computation. Similarly, the transverse traceless part of the 2-point function of the

stress energy tensor is given by

〈Tij(x)Tkl(0)〉TT = CT ΠTT
ijkl

N2(g2
eff (x))

(p−3)
(5−p)

|x|2d
(7.33)

with CT a positive constant. In this case the dimension is protected because Tij is con-

served. We can trust these results provided

g2
eff (x) ≫ 1 ⇒ |x| ≫ (g2

dN)−1/(3−p) (7.34)

For the fundamental string background we obtain

〈Oφ(x)Oφ(0)〉 ∼ N3/2gs(α
′)1/2 1

|x|5 , (7.35)

〈Tij(x)Tkl(0)〉TT ∼ N3/2gs(α
′)1/2ΠTT

ijkl

1

|x|5 (7.36)

In the IIB case S-duality relates the fundamental string solution to the D1 brane solution.

Indeed, the 2-point function (7.35) becomes equal the p = 1 case in (7.32) under S-duality,

gs → 1/gs, α
′ → α′gs.

In the IIA case the fundamental string lifts to the M2 brane. As discussed in section 5.3,

the source for the stress energy tensor of the M2 theory is simply related to the sources for
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the stress energy tensor of the string and the operator Oφ, see (5.51). Taking into account

that the worldvolume theories are related by reduction over the M-theory circle and so

their actions are related by the factor of R11, the radius of the M-theory circle, we find (up

to numerical constants)

TM2
ij ∼ R−1

11 Tij , TM2
yy ∼ R−1

11 Oφ (7.37)

Using R11 = gsls we get

〈TM2
yy (x)TM2

yy (0)〉=
1

R2
11

〈Oφ(x)Oφ(0)〉 ∼ N3/2

R11|x|5
(7.38)

with similar results for the other correlators. The stress energy tensor of the M2 theory

has dimension 3, so one expects the correlator to scale as |x|−6. However, one of the

worldvolume directions is compactified with radiusR11. Smearing out over the compactified

direction indeed results in the fall off in (7.38). Finally the N scaling is the well-known

N3/2 scaling of the M2 theory.

7.2.2 The D4 case

For the σ = 3 case corresponding to D4 branes we have

χ3(q, ρ) = 1 − 1

8
q2ρ+ · · · + ρ3

(

χ̃(6)(q) +
1

768
q6 log ρ

)

+ · · · (7.39)

where

χ̃(6)(q) =
1

384
q6
(

1

2
log q2 − log 2 + γ − 11

12

)

(7.40)

and γ is the Euler constant (not to be confused with the γ used in other parts of this paper).

The terms without log q2 are scheme dependent and will be omitted in what follows. The

one point functions and two point functions are then given by (7.28), (7.29) and (7.30)

respectively. In particular,

〈Oφ(q)Oφ(−q)〉 =
L

180
q6 ln q2. (7.41)

Fourier transforming back to position space, the scalar two function becomes

〈Oφ(x)Oφ(0)〉 = CφN
2R
(

g2
eff(x)

|x|10
)

, (7.42)

where Cφ is a positive numerical constant (obtained by collecting all numerical constants)

and as in section 4 R(1/|x|a) denotes the renormalised version of (1/|x|a). The effective

coupling constant is g2
eff (x) = g2

dN/|x|, and the gd and x dependence is consistent with the

constraints of generalized conformal invariance discussed in section 4.

This result is also consistent with the uplift to the M5-brane results. The source for the

stress energy tensor of the M5 theory is simply related to the sources for the stress energy

tensor of the D4-brane and the operator Oφ. Taking into account that the worldvolume
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theories are related by reduction over M-theory circle and so their actions are related by

the factor of R11, the radius of the M-theory circle, we find (up to numerical constants)

TM5
ij ∼ R−1

11 Tij , TM5
yy ∼ R−1

11 Oφ (7.43)

Using R11 = gsls we then get

〈TM5
yy (x)TM5

yy (0)〉=
1

R2
11

〈Oφ(x)Oφ(0)〉 ∼ N3

R11
R
(

1

|x|11
)

(7.44)

with similar results for the other correlators. The stress energy tensor of the M5 theory has

dimension six, and the correlator of the six-dimensional theory behaves as R|x|−12. Here

one of the worldvolume directions is compactified with radius R11 and smearing out over

the compactified direction indeed results in the fall off in (7.44). Note that the N scaling

is the well-known N3 scaling of the M5-brane theory.

7.3 General case

In the simple case discussed above, it was straightforward to solve the equations for lin-

ear perturbations, but in more general backgrounds the diagonalisation of the fluctuation

equations is more involved. To treat the general case, it is convenient to use the anal-

ysis [43, 8, 12] of linear fluctuations around background solutions of a single scalar field

coupled to gravity; in these paper the fluctuation equations were diagonalised for a general

domain wall scalar system.

In this section we will explain a general method for computing the two point functions

which exploits this analysis. As discussed in section 7.1 we need to determine the one point

functions to linear order in the sources and in the Hamiltonian method this corresponds to

determining the momenta to linear order in the sources. So, as in the previous section, let

us begin by considering linear fluctuations around the background of interest in the dual

frame:

hij = hB
ij(r) + γij(r, x) = e2A(r)δij + γij(r, x), (7.45)

φ = φB(r) + ϕ(r, x).

Note that the metric fluctuation has already been put into axial gauge. Next we will

express the canonical momenta in terms of these fluctuations. To do this, first note that

the extrinsic curvature of constant r hypersurfaces can be expressed as:

Ki
j = Ȧδi

j +
1

2
Ṡi

j, (7.46)

where Si
j ≡ hik

Bγkj. S
i
j can be decomposed into irreducible components as

Si
j = eij +

d

d− 1

(

1

d
δi
j −

∂i∂j

∇2
B

)

f +
∂i∂j

∇2
B

S, (7.47)

where ∂ie
i
j = eii = 0, S = Si

i , indices are raised with the inverse background metric e−2Aδij

and ∇2
B = e−2A∇2 = e−2Aδij∂i∂j . Here the diffeomorphism invariance of the transverse

space can be used to set the vector component to zero.
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The momenta (6.12) up to linear order in the fluctuations are then given by

πφ = 2B(β∂rφ+ γK) = πB
φ +B(2β∂rϕ+ γ∂rS), (7.48)

πi
i = πi,B

i − 1

2
B(d− 1)∂rS +Bdγ∂rϕ, πi

j,TT = πi,B
j,TT − 1

2
B∂re

i
j ,

where πB
φ̃

, πi,B
i and πi,B

j,TT are the background values, in the absence of fluctuations, and TT

stands for transverse and traceless. The one point functions are obtained by extracting the

components of appropriate dilatation weight from these momenta. So we need to determine

∂rϕ, ∂rS, ∂re
i
j .

To obtain these momenta, however, we would need to diagonalise the equations of

motion for the linear fluctuations, and solve for ∂rϕ etc. Diagonalising such fluctuation

equations is in general rather difficult, and thus it is convenient to exploit the analysis

of [8, 12], where the fluctuation equations were diagonalised for a generic domain wall

dilaton background. In the latter work, however, an Einstein frame bulk action was used,

so we will first need to transform our backgrounds to the Einstein frame, and then map

our fluctuation equations to the set of equations which were diagonalised in full generality

in [8, 12].

The analysis of [8, 12] begins with an Einstein frame bulk action:

S = −
∫

dd+1x
√

GE

(

1

2κ2
RE − 1

2
(∂φ̃)2 − V (φ̃)

)

. (7.49)

and then one considers domain wall solutions of the form

ds2B = dr̃2 + e2A(r̃)dxidx
i, φ̃ = φ̃B(r̃), (7.50)

which preserve Poincaré symmetry in the transverse directions. Here the subscript B

denotes that this is the background solution around which linear fluctuation equations will

be solved.

Substituting the ansatz (7.50) into the field equations gives:

Ȧ2 − κ2

d(d− 1)
( ˙̃φ

2

B − 2V (φ̃B)) = 0, (7.51)

Ä+ dȦ2 +
2κ2

d− 1
V (φ̃B) = 0,

¨̃φB + dȦ ˙̃φB − V ′(φ̃B) = 0,

where the dot denotes differentiation with respect to r̃ and the prime denotes differentiation

with respect to φ̃. In explicitly solving these equations one can use the fact that these second

order equations are solved by any solution of the first order flow equations [44, 45]:

Ȧ = − κ2

d− 1
W (φ̃B), (7.52)

˙̃φB = W ′(φ̃B),
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with the potential expressed in terms of a superpotential W as:

V (φ̃B) =
1

2

[

W ′2 − dκ2

d− 1
W 2

]

. (7.53)

Conversely, given an explicit solution of (7.51), which may not be asymptotically AdS

but φ̃B should have at most isolated zeros, one can use (7.52) to define a superpotential

W (φ̃B) [46].

Now let us consider the backgrounds of interest here, which are asymptotic to Dp-

brane backgrounds. In these cases, the action (3.4) in the dual frame can be transformed

to the Einstein frame using the transformation gE = exp(2γφ/(d − 1))gdual, giving

S = −L
∫

dd+1x
√

GE

[

RE − 1

2
(∂φ̃)2 + Ce−2γφ̃/ν(d−1)

]

. (7.54)

Here the scalar has been rescaled as

φ̃ ≡ νφ, ν ≡
√

2

(

dγ2

d− 1
− β

)

, (7.55)

so that φ̃ is canonically normalized. The metric and dilaton for the decoupled Dp-brane

background can then be written in Einstein frame as

ds2E = dr̃2 + (µr̃)2(µ+1)/µdxidx
i,

φ̃ = −2αν

µ
log(µr̃), (7.56)

r̃ =
ρ−µ/2

µ
=
eµr

µ
, µ = − 2αγ

d− 1
=

(p − 3)2

p(5 − p)
.

From this solution one can extract the parameters and functions abstractly defined

in (7.50), (7.52) and (7.53):

κ2 =
1

2
, A(r̃) =

µ+ 1

µ
log(µr̃), φ̃B =

√

2(µ+ 1)(d − 1)

µ
log(µr̃)

V (φ̃B) = −C exp

(

−
√

2µ

(µ+ 1)(d − 1)
φ̃B

)

,

W (φ̃B) = −2(d− 1)(µ + 1) exp

(

−
√

µ

2(µ+ 1)(d − 1)
φ̃B

)

.

Given a more general solution in the dual frame, which asymptotes to an AdS linear

dilaton background, one can similarly transform it into Einstein frame and extract the

corresponding superpotential etc.

Suppose the fluctuations in the Einstein frame are given by:

gEµν = gB
Eµν + γ̃µν ; φ̃ = φ̃B + ϕ̃, (7.57)
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where S̃i
j ≡ hik

B γ̃kj is:

S̃i
j = ẽij +

d

d− 1

(

1

d
δi
j −

∂i∂j

∇2
B

)

f̃ +
∂i∂j

∇2
B

S̃, (7.58)

Then these fluctuations in Einstein frame are related to those in the dual frame defined

in (7.45) via:

ẽij = eij, f̃ = 2γϕ+ f, (7.59)

S̃ =
2γd

(d− 1)
ϕ+ S, νϕ̃ = ϕ, γ̃rr =

2γd

(d− 1)
ϕ.

Note in particular that the Weyl transformation to the Einstein frame takes the fluctuations

outside axial gauge: γ̃rr 6= 0.

Using [8, 12], one can write down the diagonalised equations of motion for the linear

fluctuations in Einstein frame:

(∂2
r̃ + dȦ∂r̃ − e−2Aq2)ẽij = 0, (7.60)

(∂2
r̃ + [dȦ+ 2W∂2

φ̃
logW ]∂r̃ − e−2Aq2)ω = 0,

∂r̃S̃ =
1

(d− 1)Ȧ

(

e−2Aq2f̃ + 2κ2(∂r̃φ̃B∂r̃ϕ− V ′(φ̃B)ϕ̃− V (φ̃B)γ̃rr)
)

,

where

ω ≡ W

W ′
ϕ̃+

1

2κ2
f̃ , (7.61)

and we have Fourier transformed to momentum space, with q being the momentum.

To derive the two point functions we will need to obtain the functional dependence

of the one-point functions on the sources. The one-point functions are given in terms of

the canonical momenta, with the parts dependent on the fluctuations being given by linear

combinations of radial derivatives of fluctuations. Hence we write the radial derivatives of

the fluctuations ẽij and ω as functionals of the background fields A and φ̃B :

∂r̃ ẽ
i
j = E(A, φ̃B)ẽij , ∂r̃ω = Ω(A, φ̃B)ω. (7.62)

The first two equations in (7.60) then become first order equations for E and Ω:

Ė + E2 + dȦE − e−2Aq2 = 0, (7.63)

Ω̇ + Ω2 + [dȦ+ 2W∂2
φ̃

logW ]Ω − e−2Aq2 = 0.

Note that in the case of the Dp-brane backgrounds these equations actually coincide since

∂2
φ logW = 0. Given the solutions for E and Ω and omitting terms that contribute to

contact terms one can obtain the required expressions for the radial derivatives of other

fluctuations:

∂r̃ẽ
i
j = Eẽij , (7.64)

∂r̃ϕ̃ = Ωϕ̃+
1

2κ2

W ′

W
Ωf̃ ,

∂r̃S̃ = − 1

κ2

[

(

W ′

W

)2

Ω +
e−2A

W
q2

]

f̃ − 2
W ′

W
Ωϕ̃.
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This completes the diagonalisation of the fluctuation equations in the Einstein frame. Next

one can rewrite these relations in terms of the fluctuations and radial derivative in the dual

frame as:

∂rẽ
i
j = eγφB/(d−1)Eeij , (7.65)

ν∂rϕ̃ = eγφB/(d−1)

(

ν2Ω

(

1 +
γ

νκ2

W ′

W

)

ϕ+
ν

2κ2

W ′

W
Ωf

)

,

∂rS̃ = eγφB/(d−1)

(

− 1

κ2

[(

W ′

W

)2

Ω +
e−2A

W
q2
]

f

−2ν

[(

W ′

W
+

γ

νκ2

(

W ′

W

)2)

Ω +
γ

νκ2

e−2A

W
q2
]

ϕ

)

.

Using (7.59) in (7.48), and applying (6.28) one finds that the expressions for the one point

functions to linear order in the fluctuations are:

〈Oφ〉 = 〈Oφ〉B −B(ν∂rϕ̃− γ∂rS̃)(2σ), (7.66)

〈T i
i 〉 = 〈T i

i 〉B −B(d− 1)(∂rS̃)(2σ),

〈T i
j,TT 〉 = 〈T i

j,TT 〉B +B(∂rẽ
i
j)(2σ),

where X(2σ) denotes the term of dilatation weight 2σ ≡ (d− 2αγ) in X.

To explicitly evaluate these one point functions with linear sources we now need to

determine exact regular solutions for E and Ω. Up to this point, we have given completely

general expressions, applicable for all solutions asymptotic to the Dp-brane backgrounds.

The actual background determines the defining differential equations for E and Ω. Next we

will solve these equations for the specific case of the decoupled Dp-brane background; as

mentioned before, the equations for E and Ω become identical in this case since ∂2
φ̃

logW =

0. The only equation to be solved is thus:
(

∂2
r̃ +

d(µ+ 1)

µr̃
∂r̃ − (µr̃)−2(µ+1)/µ)q2

)

ω = 0. (7.67)

The solution which is regular in the interior, r̃ → 0, is given by

ω(r̃) = (µr̃)−cKµc

(

q

(µr̃)1/µ

)

≡ e−σrKσ(qe−r), (7.68)

µc =
1

2
(d− 2αγ) ≡ σ,

where K is the modified Bessel function of the second kind; these are exactly the same

functions found in the previous section. The solution for Ω is then

Ω = ∂r̃ ln

(

(µr̃)−cKµc

(

q

(µr̃)1/µ

))

≡ e−µr∂r ln(χσ(q, e−2r)), (7.69)

where χσ(q, ρ) was given in (7.24), and is normalized to approach one as ρ ≡ e−2r → 0.

The terms appearing in the one point functions (7.66) follow from taking the projections

onto appropriate dilatation weight:

(eγφB/(d−1)Ω)(2σ) ≡ (eµrΩ)(2σ) = −2σχ̃(2σ)(q). (7.70)
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where we have used the expansions of χσ(q, ρ) given in (7.24) and the terms of appropriate

dilatation weight, χ̃(2σ)(q), in these asymptotic expansions, see (7.26) and (7.40).

Using (7.66) one obtains the renormalised one point functions to linear order in the

sources:

〈Oφ(q)〉 = Lχ̃(2σ)(q)ν(d− 2αγ)

(

−νϕ(q)

[

1 − 2γ2

(d− 1)ν2

]2

(7.71)

+f(q)

[

γ

ν(d− 1)
− 2γ3

ν3(d− 1)2

])

〈T i
i (q)〉 = 2L(d− 2αγ)χ̃(2σ)(q)

([

− γ

ν
+

2γ3

ν3(d− 1)

]

νϕ(q) +
γ2

ν2(d− 1)
f(q)

)

,

〈T i
j (q)〉TT = L(d− 2αγ)χ̃(2σ)(q)e

i
j(q),

where we have used W ′/W = −γ/ν(d− 1) and κ2 = 1/2. The first two expressions can be

rewritten as:

〈Oφ(q)〉 = Lγ
(d− 2αγ)

α(d− 1 − 2αγ)
χ̃(2σ)(q)

(

(d− 1)φ(0)(q) + αf(0)(q)
)

(7.72)

〈T i
i (q)〉 = −2Lγ

(d− 2αγ)

(d− 1 − 2αγ)
χ̃(2σ)(q)

(

(d− 1)φ(0)(q) + αf(0)(q)
)

,

where we have renamed the sources as ϕ(q) ≡ φ(0)(q) and f(q) ≡ f(0)(q) to demonstrate

agreement with the expressions obtained previously in (7.28) and (7.29). The two point

functions are given as before by (7.30).

8. Applications

In this section we will present a number of applications of the holographic methods.

8.1 Non-extremal D1 branes

Let us first consider non-extremal D1-branes, and derive the renormalized vevs and onshell

action. The ten-dimensional solution for non-extremal D1-branes is:

ds2 = H−1/2(−fdt2 + dx2) +H1/2

(

dr2

f
+ r2dΩ2

7

)

; (8.1)

eφ = gsH
1/2; F01r = g−1

s ∂r

(

1 − Q

r6
H−1

)

,

with

H = 1 +
µ6 sinh2 α

r6
; f =

(

1 − µ6

r6

)

; Q ≡ r6o = µ6 sinhα coshα. (8.2)

The extremal limit is reached by taking µ → 0 and α → ∞ with µ3 sinhα fixed. In the

near extremal limit, for which µ≪ 1, the decoupled dual frame metric is

ds2dual = (gsN)−1/3

(

(

r

ro

)4

(−fdt2 + dx2) + r2o

(

dr2

r2f
+ dΩ2

7

)

)

. (8.3)
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Applying the reduction formulae (3.2) gives an asymptotically AdS3 solution of the three-

dimensional action:

ds2 =
dρ2

4ρ2f
+

1

ρ
(−fdt2 + dx2); (8.4)

e−4φ/3 =
1

ρ
, f =

(

1 − 8µ6

r9o
ρ3/2

)

.

The inverse Hawking temperature βH and the area of the horizon A are respectively

given by

βH =
2πr3o
3µ2

; A =
8πRxµ

4

r6o
, (8.5)

where the x direction is taken to be periodic with period 2πRx.

Next one can read off the vevs for the stress energy tensor and scalar operator by

bringing the metric into Fefferman-Graham form:

ds2 =
dz2

4z2
+

1

z

(

−dt2
(

1 − 16µ6

3r9o
z3/2

)

+ dx2

(

1 +
8µ6

3r9o
z3/2

))

;

e−2φ/3 ≡ 1√
z
eκ =

1√
z

(

1 +
4µ6

3r9o
z3/2

)

. (8.6)

Then applying (5.65) and (5.68) (analytically continued back to the Lorentzian) the vevs

of the stress energy tensor are:

〈Ttt〉 = 16L
µ6

r9o
; 〈Tyy〉 = 8L

µ6

r9o
; 〈O〉 = −4L

µ6

r9o
, (8.7)

with the conformal Ward identity (5.69) manifestly satisfied. Note that the mass is given by

M =

∫

dx〈Ttt〉 = LRx
32πµ6

r9o
. (8.8)

The renormalized onshell (Euclidean) action IE is given by

IE = −L
[
∫

ρ≥ǫ
d3x

√
gΦ(R+ C) −

∫

ρ=ǫ
d2x

√
hΦ(2K − 4 −R[h])

]

. (8.9)

Evaluating this action on the solution gives

IE = −2πβHRxL
8µ6

r9o
, (8.10)

whilst the entropy is

S = 4πLA = L
32π2Rxµ

4

r6o
, (8.11)

and thus the expected relation

IE = βHM − S (8.12)
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is satisfied. Note that M/THS = 2/3. This result is in agreement with the results found

in [47] for the entropy of non-extremal Dp-branes. The entropy can be rewritten as

S =
24π5/2

33

N2

geff(TH)
(V1TH), (8.13)

where V1 = 2πRH is the spatial volume of the D1 brane and g2
eff = g2

2NT
−2
H is the dimen-

sionless effective coupling (with g2
2 = gs/(2πα

′) the dimensionful Yang-Mills coupling con-

stant). This is indeed of the form (4.12) dictated from the generalized conformal structure.

The overall N2 is due to the fact that the bulk computation is a tree-level computation.

8.2 The Witten model of holographic YM4 theory

As the next application of the formalism let us discuss Witten’s holographic model for four

dimensional Yang-Mills theory [15]. In this model one considers D4 branes wrapping a

circle of size Lτ with anti-periodic boundary conditions for the fermions, which breaks the

supersymmetry. This system at low energies looks like a four-dimensional SU(N) gauge

theory, with Yang-Mills coupling g2
4 = g2

5/Lτ . In the limit that λ4 = g2
4N ≫ 1 there is

an effective supergravity description given by the D4 brane soliton solution, which (in the

string frame) is [15, 48]:

ds2st =

(

r

ro

)3/2

[ηαβdx
αdxβ + f(r)dτ2] +

(ro
r

)3/2
(

dr2

f(r)
+ r2dΩ2

4

)

,

eφ = gs

(

r

ro

)3/4

,

F4 = 3g−1
s r3odΩ4, (8.14)

f(r) = 1 − r3KK

r3
,

where dΩ4 is the volume form of the S4 and ro was defined below (3.2). Then rKK is the

minimum value of the radial coordinate and the circle direction τ must have periodicity

Lτ = 4πr
3/2
o /(3r

1/2
KK) to prevent a conical singularity.

By wrapping D8-branes around the S4, and along the four flat directions, one can

model chiral flavors in the gauge theory [16, 17] and the resulting Witten-Sakai-Sugimoto

model has attracted considerable attention as a simple holographic model for a non-

supersymmetric four-dimensional gauge theory. The methods developed in this paper

immediately allow one to extract holographic data from this background, and to quan-

tify the features of QCD which are well or poorly modeled.

Starting from the ten-dimensional string frame solution, one can move to the dual

frame ds2dual = (Neφ)−2/3ds2 in which the metric becomes asymptotically AdS6 × S4:

ds2dual = (Neφ)−2/3ds2st = π2/3α′

(

4

[

dρ2

4ρ2f(ρ)
+
ηαβdx

αdxβ + f(ρ)dτ2

ρ

]

+ dΩ2
4

)

,

f(ρ) ≡ 1 − ρ3

ρ3
KK

= f(r), (8.15)
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with changed variable ρ = 4r3o/r. Comparing with the reduction given in (3.2), one obtains

the following six-dimensional background:

ds2 =
dρ2

4ρ2f(ρ)
+
ηαβdx

αdxβ + f(ρ)dτ2

ρ
; (8.16)

eφ =
1

ρ3/4
,

which is asymptotically AdS6 with a linear dilaton.

The gauge theory operators dual to the metric and the scalar field are the five-

dimensional stress energy tensor Tij and the gluon operator O respectively, which satisfy

the dilatation Ward identity (see (5.83) or (6.34)):

〈T i
i 〉 +

1

g2
5

〈O〉 = 0. (8.17)

(There is no anomaly in this case, as both g(0) and κ(0) are constant.) This Ward identity

can be rewritten in terms of operators in the four-dimensional theory obtained via reduction

over the circle: the four-dimensional stress energy tensor T
(4)
ab = LτTab and the scalar

operator Oτ = LτTττ . This gives

〈T a
a 〉 + 〈Oτ 〉 +

1

g2
4

〈O〉 = 0. (8.18)

Consider the dimensional reduction of the stress energy tensor and gluon operator defined

in (4.5) from five to four dimensions. When the reduction over the circle preserves super-

symmetry, the operator Oτ coincides with − 1
g2
4
O and the four-dimensional stress energy

tensor is traceless. With non-supersymmetric boundary conditions, this is not the case

anymore, since as we will see shortly the vacuum expectation value of the trace of the

stress energy tensor is not zero and the vevs of the two operators are different. With the

proper identification of the relation between Oτ and O, the trace Ward identity would lead

to the identification of the beta function.

Next one can extract the one point functions for the stress energy tensor and gluon

operators from the coefficients in the asymptotic expansion of this solution near the bound-

ary. To apply the formulae for the holographic vevs, the metric should first be brought

into Fefferman-Graham form by changing the radial variable:

ρ̃ =

(

1 +
ρ3

6ρ3
KK

)

ρ+ O(ρ5), (8.19)

ds2 =
dρ̃2

4ρ̃2
+ ρ̃−1

(

1 +
ρ̃3

6ρ3
KK

)

ηαβdx
αdxβ + ρ̃−1

(

1 − 5ρ̃3

6ρ3
KK

)

dτ2 + · · · .

Using (6.28) the one-point function of the scalar operator is thus:

〈Oφ〉 = −12Lγκ(6) = − 2L

3ρ3
KK

, (8.20)

with the vev of the stress energy tensor being:

〈Tαβ〉 =
L

ρ3
KK

ηαβ; 〈Tττ 〉 = −5
L

ρ3
KK

. (8.21)
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The gluon condensate can be reexpressed as:

〈Oφ〉 = −26π2

38
N2 λ4

L5
τ

, (8.22)

where recall that λ4 = g2
4N is the four-dimensional ’t Hooft coupling and Lτ is the radius

of the circle. In terms of the dimension four operator O the condensate is

〈O〉 =
25π2

37
N
λ2

4

L4
τ

. (8.23)

In comparing results for this holographic model with those of QCD, it would be natural to

match the condensate values, and thus fix Lτ .

9. Discussion

In this paper we have developed precision holography for the non-conformal branes. We

found that all holographic results that were developed earlier in the context of holography

for the conformal branes can be extended to this more general setup. All branes under

consideration have a near-horizon limit with non-vanishing dilaton and a metric that (in

the string frame) is conformal to AdSp+2 × S8−p. This implies that there is a frame, the

dual frame, where the metric is exactly AdSp+2×S8−p (one can cancel the overall conformal

factor by multiplying the metric with the appropriate power of the dilaton).

There are a number of reasons why this frame is distinguished. Firstly, it is manifest in

this frame that there is an effective (p+ 1)-dimensional gravitational description, obtained

by reducing over S8−p, as required by holography. Secondly, the setup becomes the same

as that of holographic RG flows studied earlier. Actually the bulk solutions do describe an

RG flow, albeit a trivial one driven by the dimension of the coupling constant. Recall that

in the holographic RG flows studied in the past the bulk solution asymptotically becomes

AdS, corresponding to the fact that the dual QFT approaches a fixed point in the UV. The

scalar fields vanish asymptotically, and from the asymptotic fall off one can infer whether

the bulk solution corresponds to a deformation of the UV Lagrangian by the addition of

the operator dual to the corresponding field or the conformal theory in a non-trivial state

characterized (in part) by the vev of the dual operator. The coefficients in the asymptotic

expansion of the solution determine the coupling constant multiplying the dual operator in

the case of deformations, or the vev of the dual operator in the case of non-trivial states.

The non-conformal branes are analogous to the case of deformations: the asymptotic

value of the dilaton determines the value of the coupling constant, which is the (dimen-

sionful) Yang-Mills coupling constant in the case of Dp branes. The main difference is that

in the current context the theory does not flow in the UV to a (p + 1)-dimensional fixed

point. Rather in the regime where the various approximations are valid, the theory runs

trivially due to the dimensionality of the coupling constant.

In some cases however we know that a new dimension, the M-theory dimension, opens

up at strong coupling and the theory flows to a (p + 2)-dimensional fixed point. This is

the case for the IIA fundamental string and the D4 brane which uplift to the M2 and M5
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brane theories, respectively. Here is another instance that illustrates the preferred status

of the dual frame: the general solution in the dual frame

ds2d =
dρ2

4ρ2
+

1

ρ
gijdx

idxj (9.1)

e4φ/3 =
1

ρ
e2κ, (9.2)

lifts to

ds2d+1 =
dρ2

4ρ2
+

1

ρ
(gijdx

idxj + e2κdy2). (9.3)

In other words, the dual frame metric in the Fefferman-Graham gauge in d-dimensions is

equal to the d-dimensional part of the metric in (d+1) dimensions in the Fefferman-Graham

gauge, with the dilaton providing the additional dimension. It was already observed in [14]

that the radial coordinate in the dual frame is identified with the energy of the dual theory

via the UV-IR connection and here we see a more precise formulation of this statement.

The radial direction of the M5 and M2 branes is also the radial direction in the dual

frame of the D4 and F1 branes, respectively. In more covariant language, the dilatation

operator of the boundary theory is to leading order equal to the radial derivative of the

dual frame metric.

Working in the dual frame, we have systematically developed holographic renormal-

ization for all non-conformal branes. In particular, we obtained the general solutions of

the field equations with the appropriate Dirichlet boundary conditions. This allowed us to

identify the volume divergences of the action, and then remove these divergences with local

covariant counterterms. Having defined the renormalized action, we then proceeded to cal-

culate the holographic one-point functions which, by further functional differentiation wrt

sources, yield the higher point functions. The counterterm actions can be found in (5.76)

and (5.80), whilst the holographic one point functions are given in (5.77) and (5.82). Note

that the result for the stress energy tensor properly defines the notion of mass for back-

grounds with these asymptotics.

We developed holographic renormalization both in the original formulation, described

in the previous paragraph, and in the radial Hamiltonian formalism (in section 6). In the

latter, Hamilton-Jacobi theory relates the variation of the on-shell action w.r.t. boundary

conditions, thus the holographic 1-point functions, to radial canonical momenta. It follows

that one can bypass the onshell action and directly compute renormalized correlators using

radial canonical momenta π, as was developed for asymptotically AdS spacetimes in [11, 12].

For explicit calculations, the Hamiltonian method is more efficient and powerful, as it

exploits to the full the underlying symmetry structure.

Throughout the existence of an underlying generalized conformal structure plays a

crucial role. As we discussed in section 4 SYM in d dimensions admits a generalized

conformal structure, in which the action is invariant under Weyl transformations provided

that the coupling constant is also promoted to a background field Φ(0) which transforms

appropriately. This background field can be thought of as a source for a gauge invariant

operator O. Then diffeomorphism and Weyl invariance imply Ward identities for the
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correlators of the stress energy tensor and the operator O. This generalized conformal

structure is preserved at strong coupling, and governs the holographic Ward identities. In

particular, the Dirichlet boundary conditions for the dilaton are determined by the field

theory source Φ(0).

In the cases of the type IIA fundamental string and D4-branes, all the holographic

results we find are manifestly compatible with the M theory uplift. In particular, we

showed in detail how the asymptotic solutions, counterterms, one point functions and

anomalies descend from those of M2 and M5 branes. The generalized conformal structure

is also inherited from the higher dimensional conformal symmetry in these cases. This is

exactly analogous to the case of the more familiar holographic RG flows, which also have

a similar generalized conformal structure inherited from the UV fixed point.

Having set up the formalism in full generality, we then proceeded to discuss a number

of examples and applications. In section 7 we calculated two point functions of the stress

energy tensor and gluon operator. We computed these two point functions for the super-

symmetric backgrounds, and showed that the results were consistent with the underlying

generalized conformal structure. In section 7.3 we developed a general method for comput-

ing two point functions in any background which asymptotes to the non-conformal brane

background.

In section 8 we gave several more applications. One was the explicit evaluation of the

mass and action in a non-extremal brane background. The second was Witten’s model

for a non-supersymmetric four-dimensional gauge theory: we computed the dimension four

condensates in this model. One would anticipate that there are many further interesting

applications of the formalism developed here, to be explored in future work.

Acknowledgments

The authors IK and MMT are supported by NWO, via the Vidi grant “Holography, duality

and time dependence in string theory”. This work was also supported in part by the EU

contract MRTN-CT-2004-512194.

A. Useful formulae

In this appendix we collect some useful formulae for the asymptotic expansions. Given the

expansion of the d-dimensional metric gij as

gij = g(0)ij + ρg(2)ij + ρ2g(4)ij + · · · (A.1)

the inverse metric is given by

g−1 = g−1
(0) − ρg−1

(0)g(2)g
−1
(0) + ρ2(g−1

(0)g(2)g
−1
(0)g(2)g

−1
(0) − g−1

(0)g(4)g
−1
(0)) + · · · (A.2)

Next we compute the expansion of the Christoffel connection,

Γi
ij = Γi

(0)ij + ρΓi
(2)ij + ρ2Γi

(4)ij + · · · (A.3)
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Here Γi
(0)ij is the Christoffel connection of the metric g(0) and

Γi
(2)ij =

1

2
gil
(0)(∇jg(2)kl + ∇kg(2)jl −∇lg(2)jk) (A.4)

Γi
(4)ij =

1

2

(

gil
(0)(∇jg(4)kl + ∇kg(4)jl −∇lg(4)jk) − gil

(2)(∇jg(2)kl + ∇kg(2)jl −∇lg(2)jk)
)

,

where ∇ is the covariant derivative in the metric g(0).

From here we then compute the expansion of the associated curvature

Rij = R(0)ij + ρR(2)ij + ρ2R(4)ij + · · · (A.5)

with R(0)ij the Ricci tensor of g(0) and

R(2)ij =
1

2

(

∇k∇jg(2)ik −∇i∇jTr(g(2)) +R(0)kijlg
kl
(2) +R(0)img

m
(2)j

−∇2g(2)ij + ∇i∇kg(2)jk

)

, (A.6)

R(4)ij =
1

2

(

1

2
∇lTrg(2)∇lg(2)ij + gkl

(2)(Rkimjg
m
(2)l +Rkimlg

m
(2)j) (A.7)

+gkl
(2)(Rkjmig

m
(2)l +Rkjmlg

m
(2)i) + gkl

(2)∇k∇lg(2)ij +
1

2
∇jg(2)lm∇lgm

(2)i

−1

2
gkl
(2)(∇i∇kg(2)jl + ∇j∇kg(2)il) − 2Rlimjg

lm
(4) +Rimg

m
(4)j +Rjmg

m
(4)i

+
1

4
gl
(2)j∇i∇lTrg(2) +

1

4
gl
(2)i∇j∇lTr(g(2)) +

1

2
∇ig(2)lm∇lgm

(2)j

−∇2g(4)ij −
1

2
∇ig(2)lm∇jg

lm
(2) −∇mg(2)il∇lgm

(2)j −∇mg(2)il∇mgl
(2)j

)

.

B. The energy momentum tensor in the conformal cases

In this section we streamline the derivation of the vev of the energy-momentum tensor

in terms of the asymptotic coefficients for the conformal cases D = 4 and D = 6 given

in [6]. The starting point is the expression of the stress energy tensor as sum of two

contributions, one originating from the bulk action and the other from the counterterms,

eqn (3.5)-(3.6)-(3.7) of [6]:

〈Tab〉 = 2LD+1 lim
ρ→0

(

1

ρD/2−1
Tab[G]

)

, (B.1)

Tab[G] = T reg
ab + T ct

ab,

T reg
ab = G′

ab −GabTr[G−1G′] − 1 −D

ρ
Gab,

T ct
ab = −D − 1

ρ
Gab +

1

(D − 2)

(

R(G)ab −
1

2
R(G)Gab

)

+
ρ

(D − 4)(D − 2)2

[

�R(G)ab + 2R(G)acbdR(G)cd − D − 2

2(D − 1)
DaDbR(G)

− D

2(D − 1)
R(G)R(G)ab −

1

2
Gab(R(G)cdR(G)cd − D

4(D − 1)
R(G)2

+
1

D − 1
�R(G))

]

+
1

2
T log

ab log ρ,
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where LD+1 = 1
16πGD+1

with GD+1 the Newton constant and T log
ab is the stress energy tensor

of the action given by the conformal anomaly.7 Note that for D = 2 only the first term in

T ct
ab applies; for D = 4 only the first line applies plus the logarithmic terms, whilst for D = 6

all terms listed are needed and for D > 6 one would need to include additional terms.

For D = 2 one immediately obtains the answer

〈Tab〉 = 2LD+1

(

G(2)ab −G(0)abTrG(2)

)

(B.2)

For D > 2 one can simplify the evaluation of (B.1) by using the equation of motions (5.10)

to obtain

Rab −
1

2
RGab = −(D − 2)G′

ab + (D − 2)Tr(G−1G′)Gab (B.3)

+ρ

[

2G′′ − 2G′G−1G′ + Tr(G−1G′)G′

+

(

− Tr(G−1G′′) + Tr(G−1G′)2 − 1

2
(TrG−1G′)2

)

G

]

ab

.

Using this identity in (B.1) we see that T reg
ab cancels the first line of T ct

ab up to the terms

proportional to ρ in (B.3), so Tab[G] is manifestly linear in ρ. It follows that we only need

to set ρ = 0 in the remaining terms to obtain the vev for D = 4:

〈Tab〉 = 2LD+1

(

2G(4)ab −G(2)
2
ab +

1

2
TrG(2)G(2)ab (B.4)

+
1

4
G(0)ab(Tr(G−1G(2))

2 − (TrG−1G(2))
2) + 3H(4)ab

)

.

For D = 6 one can check straightforwardly that order ρ terms in Tab[G] cancel, so there

is indeed a finite limit. To obtain the vev one needs to extract the order ρ2 terms. To

simplify this computation we differentiate the field equations (5.10) to obtain a formula for

the radial derivative of the Ricci tensor,

R′
ab = Rc

(aG
′
b)c −RacbdG

′cd +D(aD
bG′

b)c −
1

2
�G′

ab +Da∂bTrG′ (B.5)

=
1

D − 2

[

−RacbdR
cd +

D − 2

4(D − 1)
DaDbR+

1

2
�Rab +

1

4(D − 1)
�RGab

+Rc
aRbc − ρ

[

4R(0)
c
(aC̃b)c − 4R(0)acbdC̃

cd − D − 2

4(D − 1)
Da∂bB

−2�C̃ab −
1

4(D − 1)
G(0)ab

]]

+ O(ρ2),

C̃ab =

(

G(4) −
1

2
G(2)

2 +
1

4
G(2)TrG(2)

)

ab

,

B = TrG(2)
2 − (TrG(2))

2.

Then we note that the terms involving the Riemann tensor and covariant derivatives enter

with the same relative factors as in T ct
ab, so we can use (B.5) to express T ct

ab in terms of

7The factor of 1/2 in front of T log

ab corrects a typo in [6].
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R′
ab = R(2)ab + 2ρR(4)ab + · · · , which is easier to relate to higher expansion coefficients.

Indeed, as is discussed in the next appendix, the coefficient R(2)ab, R(4)ab can be expressed

in terms of G(2)ab, G(4)ab and H(6)ab.

Combining these results and setting D = 6 we obtain

〈Tab〉 = 2L7

(

3G(6)ab − 3A(6)ab +
1

8
Sab +

11

2
H(6)ab

)

, (B.6)

where A(6)ab and Sab are given by [6]

Sab = �Cab + 2RacbdC
cd + 4(G(2)G(4) −G(4)G(2))ab (B.7)

+
1

10
(DaDbB −G(0)ab�B) +

2

5
G(2)abB

+G(0)ab

(

− 2

3
TrG3

(2) −
4

15
(TrG(2))

3 +
3

5
TrG(2)TrG2

(2)

)

,

A(6)ab =
1

3

(

(2G(2)G(4) +G(4)G(2))ab −G3
(2)ab +

1

8
[TrG2

(2) − (TrG(2))
2]G(2)ab

−TrG(2)

[

G(4)ab −
1

2
G2

(2)ab

]

−
[

1

8
TrG2

(2)TrG(2) −
1

24
(TrG(2))

3

−1

6
TrG3

(2) +
1

2
Tr(G(2)G(4))

]

G(0)ab

)

,

Cab =

(

G(4) −
1

2
G(2)

2 +
1

4
G(2)TrG(2)

)

ab

+
1

8
G(0)abB,

B = TrG(2)
2 − (TrG(2))

2.

Noting that L7 = N3/(3π3) and introducing the combination

tab = G(6)ab −A(6)ab +
1

24
Sab (B.8)

the stress energy tensor may be expressed as

〈Tab〉 =
N3

3π3
(6tab + 11H(6)ab). (B.9)

This result includes the term in H
(6)ab

which was not given in [6].

C. Reduction of M5 to D4

The expansion coefficients for an asymptotically local AdSD+1 metric were given in [6].

We will be interested in the case where D = d+1, for which the first expansion coefficients

are:

G(2)ab =
1

d− 1

(

−R(0)ab +
1

2d
R(0)G(0)ab

)

; (C.1)

G(4)ab =
1

2(d− 3)

(

−R(2)ab − 2(G2
(2))ab +

1

2
Tr(G2

(2))G(0)ab

)

.
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Using the explicit form of G(2)ab and the D-dimensional analogue of (A.6) we obtain:

R(2)ab = − 1

2(d− 1)

(

2R(0)acR
c
(0)b − 2R(0)cadbR

cd
(0) −

d− 1

2d
DaDbR(0) (C.2)

+D2R(0)ab −
1

2d
D2R(0)G(0)ab

)

,

G(4)ab = − 1

d− 3

(

− 1

8d
DaDbR+

1

4(d − 1)
DcD

cRab

− 1

8d(d− 1)
DcD

cRG(0)ab +
1

2(d − 1)
RcdRacbd

− d− 3

2(d− 1)2
Rc

aRcb −
1

d(d − 1)2
RRab

− 1

4(d− 1)2
RcdRcdG(0)ab + 3

(d+ 1)

16d2(d− 1)2
R2G(0)ab

)

,

where Da is the covariant derivative in the metric G(0). Note that R(2) = 0, and thus

TrG(4) =
1

4
Tr(G2

(2)). (C.3)

At next order one finds that the trace and the divergence of G(6) are determined via

Tr(G(6)) =
2

3
Tr(G(2)G(4)) −

1

6
Tr(G3

(2)); (C.4)

DaG(6)ab = DaA(6)ab +
1

6
Tr(G(4)DbG(2));

A(6)ab =
1

3

(

(2G(2)G(4) +G(4)G(2))ab − (G3
(2))ab +

1

8
[TrG2

(2) − (TrG(2))
2]G(2)ab

−TrG(2)

[

G(4)ab −
1

2
(G2

(2))ab

]

−
[

1

8
TrG2

(2)TrG(2) −
1

24
(TrG(2))

3

−1

6
TrG3

(2) +
1

2
Tr(G(2)G(4))

]

G(0)ab

)

. (C.5)

The logarithmic term in the expansion H(6) is given by

H(6)ab =
1

6
(R(4)ab +

(

− Tr(G(2)G(4)) +
1

2
Tr(G3

(2))

)

G(0)ab) (C.6)

−1

6
Tr(G(2))G(4)ab −

1

3
(G3

(2))ab +
2

3
(G(2)G(4) +G(4)G(2))ab.

Note that H(6) is traceless and divergence free.

For the dimensional reduction it is useful to note that the non-vanishing components

of the Riemann tensor can be expressed as

R(G)ijkl = Rijkl; (C.7)

R(G)yiyj = −e2κ(∇i∂jκ+ (∂iκ)(∂jκ)),

and similarly the non-vanishing components of the Ricci tensor are

R(G)ij = Rij −∇i∂jκ− ∂iκ∂jκ; (C.8)

R(G)yy = e2κ(−∇i∂iκ− ∂iκ∂
iκ).
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Let furthermore S be a scalar and Cab a symmetric tensor with Ciy = 0. Then the Laplacian

reduces as

D2S = (∇2 + ∂iκ∂i)S, (C.9)

D2Cij = (∇2 + ∂lκ∇l)Cij − 2∂lκ∂(iκC
l
j) + 2∂iκ∂jκC

y
y ,

D2Cy
y = (∇2 + ∂iκ∂i)C

y
y + 2∂iκ∂jκC

ij − 2∂iκ∂
iκCy

y .

Letting G(0)ij = g(0)ij and G(0)yy = e2κ(0) one finds that

R(G)(0)ij = R(0)ij −∇i∂jκ(0) − ∂iκ(0)∂jκ(0); (C.10)

R(G)(0)yy = e2κ(0)(−∇i∂iκ(0) − ∂iκ(0)∂
iκ(0)),

with R(G)(0)yi = 0. Substituting into (5.50) gives8

G(2)ij =
1

d− 1

(

−R(0)ij +
1

2d
R(0)g(0)ij + (∇{i∂j}κ)(0) + ∂{iκ(0)∂j}κ(0))

)

; (C.11)

G(2)yy = e2κ(0)

(

1

2d(d − 1)
R(0) +

1

d
(∇2κ(0) + (∂κ(0))

2)

)

,

with G(2)yi = 0. Now using

Gyy = e2κ = e(2κ(0)+2ρκ(2)+··· ) = e2κ(0)(1 + 2ρκ(2) + · · · ) (C.12)

one determines κ(2) to be exactly the expression given in (5.26).

One next shows that G(4)ab in (C.1) reduces as

G(4)ij = g(4)ij ; G(4)yy = e2κ(0)(2κ2
(2) + 2κ(4)), (C.13)

with g(4)ij and κ(4) given in (5.30). This follows from the expansion of the six-dimensional

curvatures at second order:

R(G)(2)ij = R(2)ij − (∇i∂jκ)(2) − (∂iκ∂jκ)(2); (C.14)

R(G)(2)yy = −e2κ(0)(∇i∂iκ+ ∂iκ∂
iκ)(2) − e2κ(0)2κ(2)(∇i∂iκ+ ∂iκ∂

iκ)(0).

Reducing (C.4) gives

Tr(G(6)) = Tr(g(6)) + 2κ(6) +
4

3
κ3

(2) + 4κ(2)κ(4); (C.15)

=
2

3
Tr(g(2)g(4)) +

4

3
κ(2)(κ

2
(2) + 2κ(4)) −

1

6
Tr(g3

(2)),

and thus gives

λ6 = Tr(g(6)) + 2κ(6) =
2

3
Tr(g(2)g(4)) −

4

3
κ(2)κ(4) −

1

6
Tr(g3

(2)). (C.16)

The reduction of (C.6) gives

H(6)ij = h(6)ij ; H(6)yy = e2κ02κ̃(6), (C.17)

8Round brackets (ij) denote symmetrisation and curly brackets {ij} traceless symmetrisation of indices.
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with

h(6)ij = − 1

12

[

− 2R(4)ij + (−Trg3
(2) + 2Trg(2)g(4) + 8κ2κ4)g(0)ij + 2(Trg(2))g(4)ij

−8(g(4)g(2))ij − 8(g(2)g(4))ij + 4g3
(2)ij + 2(∇i∂jκ)(4) + 2(∂iκ∂jκ)(4) + 4κ(2)g(4)ij

]

κ̃(6) = − 1

12

[

(∇2κ)(4) + (∂κ)2(4) + Trg(2)g(4) −
1

2
Trg3

(2) (C.18)

−κ(2)Trg2
(2) + 4κ(4)Trg(2) − 4κ3

(2) + 12κ(2)κ(4)

]

,

which agree with the expressions (5.34). In reducing the curvature term R(G)(4)yy one

should use the identities:

−((∇2κ) + (∂κ)2)(0) = −10κ(2) − Trg(2); (C.19)

−((∇2κ) + (∂κ)2)(2) = −8κ(4) + 6κ2
(2) + 2κ(2)Trg(2) +

1

2
Trg2

(2).

D. Explicit expressions for momentum coefficients

In the following we give explicit expressions for the terms in the expansions of the momenta

in eigenfunctions of the dilatation operator. The expressions given below are applicable

for β = 0 in (3.4) and d ≥ 3, although in this paper we will use only the case of d = 5

(the D4-branes). Here we give K(2n)ij and pφ
(2n) up to n = 2; note that Φ̂ = eγφ. These

expressions are needed to compute the anomaly and one point functions for the D4-brane

in the Hamiltonian formalism in section 6.4.2:9

γpφ
(2) = −1

d

[

1

2(d − 1)
R+ Φ̂−1∇̂2Φ̂

]

,

K(2) =
1

2(d− 1)
R,

K(2)ij =
1

d− 1

[

Rij −
1

2d
Rhij − Φ̂−1∇̂{i∂j}Φ̂

]

; (D.1)

γpφ
(4) =

1

2d(d− 1)2(d− 3)

[

− 3RijR
ij +

3(d + 1)

4d
R2 − 3

d
∇̂2R− 3(Φ̂−1∇̂{i∂j}Φ̂)2

−2(d− 3)(Φ̂−1∇̂i(R
ij∂jΦ̂) − d+ 2

2d
Φ̂−1∇̂j(R∂jΦ̂) +

1

2d
Φ̂−1∇̂2(Φ̂R))

−2d(Φ̂−1∇̂i∇̂j∇̂{i∇̂j}Φ̂ − 2Φ̂−1∇i(Φ̂−1∂jΦ̂∇̂{i∇̂j}Φ̂))

]

,

K(4) = − 1

2(d− 3)(d − 1)2

[

−RijR
ij +

d+ 1

4d
R2 − 1

d
∇̂2R− (Φ̂−1∇̂{i∂j}Φ̂)2

−2Φ̂−1∇̂i∇̂j∇̂{i∇̂j}Φ̂ + 4Φ̂−1∇i(Φ̂−1∂jΦ̂∇̂{i∇̂j}Φ̂)

]

,

9Round brackets (ij) denote symmetrisation and curly brackets {ij} traceless symmetrisation of indices.
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K(4)
ij = γpφ

(4)h
ij − 1

(d− 1)2(d− 3)

[

− 2RikRj
k +

d+ 1

2d
RRij − 2Φ̂−2∇̂i∂kΦ̂∇̂{j∂k}Φ̂

−1

d
(∇̂i∂jR+ ∇̂2Rij) + Φ̂−1∇̂lX

ijl

]

,

Xijl = −2∇̂k(Φ̂R
kl)hij + 2∇̂(i(Φ̂Rj)l) − ∇̂l(Φ̂Rij)

+
d+ 1

2d
[∇̂l(Φ̂R)hij − hl(i∇̂j)(Φ̂R)] + 2Φ̂−1∇̂l∂(iΦ̂∂j)Φ̂ − Φ̂−1∇̂{i∂j}Φ̂∂lΦ̂

−2

d
Φ̂−1hl(i∇̂2Φ̂∂j)Φ̂ +

1

d

[

hl(iΦ̂∂j)R+
d− 1

2
Φ̂∂lRhij − ∇̂l(Φ̂Rij)

+2Φ̂∇̂lRij − d∇̂l∇̂2Φ̂hij + hl(i∇̂j)∇̂2Φ̂

]

.

Note that the terms K(2) and K(4) correspond to the (non-logarithmic) counterterms in

the action.
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